资源描述
除草剂灭草原理知识
1杂草对除草剂的吸收
除草剂必须被杂草吸收和在体内运转并与作用靶标结合后,才能发挥其生理与生物化学效应,干扰杂草的代谢作用,导致杂草死亡,由于除草剂品种特性及使用方法不同,杂草对其吸收及运转途径也不同。
1.1茎叶吸收
叶片是吸收除草剂的重要部位,凡苗后茎叶处理除草剂主要通过叶片吸收而进入植物内部。除草剂在叶片上的粘着与展布情况决定于叶表面的可湿润性和溶液的表面张力。单位叶面积上除草剂雾滴实际覆盖面积影响药效,通常,叶面处理剂的雾滴覆盖密度要比土壤处理剂或杀虫剂、杀菌剂要大些。落于叶表面的雾滴必须通过以下几个阶段进入细胞质。①渗入蜡质(角质);②渗入表皮的细胞壁;③进入质膜;④释放于细胞质中。
角质层是覆盖于叶片表皮细胞的蜡质形成物,它是一种均匀、连续、少孔隙的半透性膜,不溶于水及大多数有机溶剂,其组成与结构导致既具有亲脂途径,也具有亲水途径。除草剂通过角质层的扩散有三种途径:(1)通过分子间隙渗入;(2)水溶液溶质通过水与类脂物之间充水的果胶通道移动,这是水溶性溶质扩散的主要途径;(3)油与油溶性物资直接通过蜡质部分移动,这是油类与油溶性物质直接通过的主要途径。
除草剂渗入角质层是一种物理过程,直接受植株含水量、PH、载体表面张力、雾滴大小、除草剂分子的特性以及角质层构造与厚度等因素的影响。
首先,除草剂的极性是一个关键因素,极性中等的除草剂分子比非极性或高度极性的分子易于渗入角质层,完全非极性的分子积累于角质层的蜡质成分中而不能通过,极性过强的除草剂分子与水具有高度亲合性亦不易渗入。其次,未解离的除草剂分子比其离子易于渗入。极性与非极性除草剂进入叶片的通道.图1)叶片表皮细胞的外细胞壁与角质层之间没有明显界限,渗入角质层的除草剂是通过外壁胞质连丝而通过细胞壁的,通常水溶性物质易于通过细胞壁,而亲脂性物质渗入细胞壁要比通过角质层更为困难。
[E蛙辨丸逾饪I加律歧适乳地您
图1叶片角质层-细胞壁-质膜的构造与除草剂的吸收
通过细胞壁的除草剂分子或离子被吸附于质膜外表面,再通过扩散作用穿过质膜或借助于质膜内陷形成小泡而通过细胞啜入进入细胞质中。水溶性分子通过质膜的速度与其分子大小负相关,脂溶性分子通过质膜的速度与其脂溶性正相关,与分子大小无关。通过质膜的除草剂停留于细胞质或液泡中,或者再通过胞质流动向植株其它部位运转。除草剂通过原生质膜所需要的能量来自于线粒体内氧化磷酸化作用及叶绿体内光和磷酸化作用,进入细胞内的除草剂则通过共质体中胞质流动从细胞向细胞移动。
此外,除了角质层的渗透作用外,一些除草剂的气体、乳油及表面张力小的水溶液也可以通过气孔进入。除草剂可从气孔直接渗透到气孔室。气孔吸收量的大小受药液在叶片的湿润程度影响大,而受气孔张开的程度影响小。一般来说,气孔对除草剂的吸收不很重要。气孔对除草剂的吸收的主要限制因子是药滴的表面张力。药液穿透气孔,表面张力需小于30mN/m 2。然而,大多数农用除草剂药液的表面张力在30-35mN/m 2,很难通过气孔渗入。但有些表面活性剂的活性极高,如有机硅表面活性剂,可大大降低药液的表面张力。如在除草剂中加入这类表面活性剂,则可提高气孔的吸收量。由气孔进入,在喷药后短时间内起重要作用,但在较长时间内仍以渗透作用为主。
1.2根系吸收
根是土壤处理除草剂的主要吸收部位。根系具有很大的吸收表面,随着幼苗的生长,根系体积与表面积不断扩大。一株生长4个月的黑麦草总根长可达
626km ,表面积达233m2,加上根毛可超过638 m2,这样的根系可以从土壤中吸收大量的水与营养物质,溶解在水中的除草剂接触到根表面时,被根系连同水一起吸收。吸收过程是被动的,即简单的扩散现象。根细胞吸收除草剂的速度与除草剂的脂溶性成正相关,具有极性的除草剂进入根细胞的速度较慢,而脂溶性的除草剂进入根细胞的速度较快。根细胞对弱酸性的除草剂受土壤溶液的PH值的影响,在低pH值的情况下,吸收量大。
表皮细胞皮层细胞内皮层细胞中柱细胞
凯氏带
图2除草剂进入植物根内的途径(E. Epstin. 192)3
•分子进入细胞壁(非共质体),通过凯氏带扩散进入木质部
O分子进入原生体(共质体),通过胞间连丝从细胞进入韧皮部
x 分子既能进入细胞壁(非共质体),也能进入原生体(共质体),最终进入木质部与韧皮部.
除草剂从根部进入植物体内有三个途径:即经质外体系、共质体系与质外 共质体系(图2)。经质外体系途径是除草剂先在细胞壁中移动,中间经过凯氏带而进入木质部。经共质体途径是除草剂最先穿过细胞壁,然后进入表皮层与皮层的细胞原生质中,通过胞间连丝在细胞间移动,经内皮层、中柱达到韧皮部。质外-共质体系途径,基本上和经共质体途径相同,不过药剂在通过凯氏带后,可能再进入细胞壁而到达木质部。
根部一般不含角质层,且以相对多的游离间隙形成较大的吸附表面,因此根系对除草剂的吸收比叶片容易,吸收极性化合物比较容易,非极性化合生较困难,除草剂经根部质外体系进入植物体内,较共质体系进入重要。因为质外体系能借助木质部的蒸腾液流,将除草剂快速向上移动;而共质体系主要在韧皮部,向上输导是有限的。土壤溶液中的除草剂分子或离子接触分生组织区的根毛后,通过扩散作用进入根内,根系吸收与除草剂浓度直线相关,开始阶段吸收迅速,其后逐步下降。从开始吸收至达到最大值所需时间因除草剂品种及杂草种类而异,施药后在杂草吸收的初期阶段,保证土壤含水量可以促进吸收,从而提高除草效果。1. 3幼芽吸收
土壤处理除草剂除了被植物的根吸收外,也可被种子和未出土的幼芽(包括胚轴)吸收。在杂草出苗前,幼芽虽也有角质层,但其发育的程度比地上部低,所以,它不是除草剂进入的有效障碍。出土的幼芽吸收除草剂的能力因植物的种类和除草剂品种不同而异。一般来说,禾本科的幼芽对除草剂较敏感。二硝基苯胺类、酰胺类、三氮苯类等均可通过未出土的幼芽吸收。除草剂对根、芽的联合作用为加成作用,通常,禾本科杂草主要是通过幼芽的胚芽鞘吸收,而阔叶杂草则以幼芽的下胚轴吸收为主。
了解杂草和作物的根或芽对某种除草剂吸收的相对重要性能帮助我们有效、安全地使用该种除草剂。如以芽吸收为主的除草剂,将其施用在杂草芽所处在的土层,可达到最大的除草作用。
2除草剂在杂草体内的传导
除草剂在杂草体内的传导途径大体上可分为两条,即共质体途径和质外体途径,以共质体途径传导主要是在细胞原生质相互联系的活体中运转,与光合产物和胞质流同行,前者从源到库,可长距离运转,韧皮部是主要的运转通道;后者仅通过胞间连丝作短距离细胞间运转。质外体系是通过细胞壁与导管连系的系统与蒸腾流(水和无机盐)同行,作长距离的运转,其通道主要是导管,实际上,大部分除草剂的传导可偏重某一种途径,但不完全靠一种途径。
(1)短距离传导
除草剂被植物根、叶吸收后,必须在植物体内移动,才到达作用部位。有些除草剂从进入点到达作用部位所移动的距离很短,这类除草剂主要是苗前处理剂、茎叶处理的光合作用抑制剂。例如,百草枯不需要远距离移动,只要进入含有叶绿素的细胞就发挥活性。.
植物细胞壁和细胞膜不是除草剂移动的重要障碍。一旦除草剂被植物吸收,在体内的短距离的移动就会发生。除草剂可随胞质流通过胞间连丝从一个细胞移动到另一个细胞,或通过扩散作用和水分质体流在非共质体移动。
根部吸收的除草剂在到达内皮层之前可通过非共质体和共质体传导。由于凯氏带的阻隔,通过内皮层时,只能从共质体传导。通过内皮层后,则又可经非共质体和共质体传导。
(2)长距离传导
对很多苗后处理除草剂来说,长距离的传导才能更有效杀灭杂草,特别是多年生杂草。如果长距离传导的除草剂量不够,则杂草不能完全被杀死,只部分枯死或生长受到抑制,杂草很快可恢复生长。
除草剂通过木质部和韧皮部在植物体内进行长距离的传导。按在木质部和韧皮部的移动性,除草剂可分为四大类:木质部可移动的、韧皮部可移动的、木质部和韧皮部均可移动的和不可移动的。这种分类是人为划分的,它并不能真正反映除草剂在植物体内的移动特性。因为,所有除草剂都有能力在木质部和韧皮部移动,只是有的除草剂在木质部的移动量大于在韧皮部的移动量,有的除草剂则在韧皮部的移动量大于在木质部的移动量。
① 木质部传导
木质部是非共质体,其功能是作为水、无机离子、氨基酸和其它溶质的传导通道。植物体内水势梯度影响到水在木质部的移动,从土壤?根?茎?叶?空气,水势梯度由高到低。溶解在水中的除草剂随着蒸腾流从水势高的根部移动到水势低的叶片或生长点。
大多数除草剂易在木质部移动,但由于如下原因,并不是所有的除草剂都能在木质部移动:①除草剂被木质部和韧皮部的细胞成分所吸附;②除草剂被细胞器(如液泡、质体)所分隔;③除草剂和植物体内物质发生共轭作用而不能在木质部移动。如土壤处理的弱酸性除草剂阴离子易滞留在根细胞,使其在木质部传导量较低。
环境条件,如土壤和空气湿度,影响蒸腾作用,同时也就影响到除草剂在木质部的移动。土壤湿度大、空气干燥,蒸腾作用强。在水分严重亏缺的条件下,气孔关闭,即使此时土壤和空气之间的水势梯度较大,蒸腾作用也下降,从而降低除草剂从根到叶片的传导量。然而,在大多数情况下,水分的蒸腾量和除草剂在木质部的传导量成正相关。
② 韧皮部传导
韧皮部是共质体,它是同化物传导通道。在成熟叶片叶肉细胞合成的糖流到非共质体中,然后再从非共质体转移到韧皮部,也可直接从叶肉细胞转移到韧皮部。在木质部里,糖沿着渗透压流移动到嫩叶、花序、正在发育的种子、果实、根、地下茎等组织。除草剂随着同化物流在木质部被动移动。除草剂可以不进入叶片细胞的细胞质,而直接从非共质体移动到木质部,也可先进入表皮和叶肉细胞,然后再移动到韧皮部。
韧皮部传导的除草剂,有少量的可以从韧皮部渗漏到木质部或相邻组织,并在木质部传导。这样,严格地来说没有绝对的韧皮部传导的除草剂,只是在韧皮部传导的量比在木质部传导的量大。韧皮部传导的除草剂这种特性使得它比同化物质更好地在植物体内均匀分布。
有些除草剂(如禾草灵)在韧皮部的移动性小,是由于它极易从韧皮部渗漏到木质部和邻近的组织,而不易在韧皮部滞留。
影响光合作用的各种环境条件如气温、相对湿度、光照和土壤湿度均影响除草剂在韧皮部的传导。在使用这类除草剂时,要充分考虑到这些因素的影响。同时也要考虑到杂草在不同时期同化物质移动方向,及除草剂使用对光合作用的影响,以便除草剂在韧皮部的传导,达到彻底灭草的目的。如为了彻底防治多年生杂草,施药时注意将药液喷施到下部叶片,使药剂传导到杂草的地下部分。因为,地下部的同化物主要来源于下部的叶片。又如为了有效地防治难防除的多年生杂草,分次低量喷施除草剂,以免一次大量喷施伤害叶片而不利除草剂的传导,从而降低对地下部的杀伤作用。
药剂通过叶片吸收主要靠共质体途径传导,即从吸收部位通过胞间连丝或细胞间的渗透进入维管束组织,经韧皮部随光合产物进行长距离传导。向上到达幼芽,幼叶等部位,向下进入幼根,在分生组织起作用,为了进入共质体,除草剂首先必须进入质外体系,质外体系能为除草剂提供广阔地贮存处。除草剂通过光合产物流的运转速度为10-1cm /上因此,影响光合作用的因素也就影响药剂传导,光合作用强的时候用药则有利于吸收和传导,药效就好。
一年生杂草幼苗期光合产物向根和芽输导,因此,茎叶处理一年生杂草在幼苗期用药效果好。而多年生杂草幼苗期由地下茎向幼苗输送养分,幼苗期茎叶处理因得不到良好的运转效果较差。当多年生杂草生长较大时,光合产物由茎叶向地下茎输入,此时进行茎叶处理,药剂可随光合产物进入地下茎而发挥作用,效果较好。但进入晚秋,地下根茎休眠,地上部不向下输送同化物,用药效果也差。内吸性除草剂作茎叶处理剂量不宜过大,否则,迅速局部杀死共质体系统,药剂得不到运转,最终只起触杀作用,效果较差。因此,茎叶喷雾内吸性除草剂防除多年生杂草宜小剂量多次用药,才能达到根除的目的。进行内吸性除草剂与触杀性除草剂混用时,应事先进行认真分析和试验,以防触杀性除草剂破坏内吸性除草剂的传导通道,而出现拮抗作用。如杀单子叶杂草的禾草灵与2, 4-D混用效果就比较差。
一般在木质部运转的除草剂施于叶面后难以进行较长距离的运转,故有些除草剂叶面处理药效较差,改为土壤处理后效果较好。这种情况如敌草隆等。同样,在韧皮部传导的除草剂施于根部,则药剂只停留在根部而不向上传导,或者向上运转很少,如野燕枯施于杂草根部因得不到有效的传导而效果很差。
由杂草根部吸收的除草剂,主要由非共质体途径传导,即由根部吸收通过细胞壁,进入木质部,到达叶和上部生长点,沿水和无机盐运转的途径传导。这是非生活组织途径,运转的动力主要是叶面蒸腾。因此,运转的速度与气温、光照、风、大气湿度、土壤含水量等影响叶面蒸腾的要素有关,一般速度是每小时9m ,蒸腾作用强则根系吸收和传导药剂多,除草效果好。有些除草剂基本上只能经非共质体途径传导,由于幼叶和生长点蒸腾作用相对较弱,运转到新叶中的除草剂较少,故这种除草剂对新叶的作用较慢。有些除草剂在共质体和非共质体系统均可运转,由木质部运转到叶片后,还可随同化物传导到生长点和植株其它部位,这样便可提高对生长点和地下根茎的作用效果。
在主要农作物田的杂草防除中,往往杂草对药剂的吸收部位就是作用部位,并不依靠药剂在杂草体内作长距离传导,而更强调作用部位能吸收到药剂。
3影响除草剂吸收的主要因素
3.1影响茎叶处理除草剂吸收的因素
(1)喷洒质量
首先要保证正确的用量、施药方法及喷雾技术是发挥药效的基本保证,喷雾技术主要视除草剂特性(传导型、触杀型)、喷雾器械(人工喷雾器、地面喷雾机械、航空施药)和其它条件而定。茎叶处理剂的药效在很大程度上决定于雾滴沉降规律及其在叶片上的覆盖面积,其所要求的雾滴密度要比土壤处理大。雾滴在叶表面的滞留时间直接影响到除草剂的吸收,滞留时间可由喷洒液的表面张力决定,水的表面张力大,在蜡质表面形成球形,不易滞留,加入适宜的表面活性剂可显著降低表面张力,增加水溶液的湿润性,从而促进滞留。对于喷洒质量总的要求是让药剂均匀分布在杂草上,使飘失和流失降到最低。
(2)杂草的状况
一般幼龄期的杂草,叶面蜡质层和角质层较薄,表皮细胞柔嫩,极易吸收药剂,此外,幼小杂草根系弱,抗性差,对药剂敏感,随着杂草叶龄增长,杂草抗药力增强,药效即下降。不同的杂草和药剂,对适宜喷药的杂草叶龄要求不同,如绿磺隆防除看麦娘,适宜叶龄为0-2叶期,超过2叶期药效即显著下降;而盖草能、禾草克等防除禾本科杂草的适宜叶龄为2-4叶期,超过5叶期,唯有加大剂量才能保证效果。
(3 )土壤条件
当土壤含水量和养分充足时,杂草生育旺盛,组织柔嫩,吸收效果好,药效高;反之,在干旱、瘠薄条件下,植物本身通过自我调节作用,抗逆性增强,叶表面角质层增厚,气孔开张程度小,不利于药剂的吸收,使药效下降。
(4) 温度
温度通过改变细胞质的粘度以及积累、结合、新陈代谢和除草剂分子的转移而间接影响吸收速度。在一定范围内温度上升10°C, 一些除草剂的吸收速度可提高1倍。大多数茎叶处理剂是光合作用抑制剂,这些除草剂必须随同化物运转才能对杂草发生全株性的作用,温度高、同化产物多,运转频繁,对除草剂的吸收、运转和代谢均增强。高温时,相当多的除草剂,特别是苯氧羧酸类除草剂向角质层的渗透加强。因此,大多数除草剂在高温下被更多地吸收,除草作用快、效果好。但也有个别除草剂在高温下活性反而大大下降,如禾草灵防除麦田禾本科杂草时,在较低温下效果好,从10C上升到24C,药效大大下降;燕麦灵、野燕畏也是在低温下药效好,高温药效差。
(5) 湿度
湿度高低影响叶片上气孔的开闭程度,进而影响药剂的吸收。空气湿度大,气孔张开多,有利于除草剂的吸收;空气湿度还显著影响叶片角质层的发育,促进角质层水化,便于药剂渗透;湿度高能延缓雾滴在叶片上的干燥和挥发,有利于除草剂的吸收。叶片高含水量可使叶片内的水接近叶表面,为除草剂分子进入质外体创造一个连续通路,进而进入共质体;由于原生质中膨压较高,致使原生质流活性增强,加快了除草剂的传导和吸收。喷药前叶面大量带水,或药后较短时间内降雨,则易使叶面药剂淋入土中,使效果下降。由于不同的药剂渗透力不同,杂草吸收的速度也不同,耐雨淋程度也不同。例如,百草枯、枯草多、虎威、盖草能等喷后几分钟至半小时,即可被杂草吸收,其后降雨即不影响药效,而灭草松等除草剂被植物吸收很慢,喷后8小时内降雨对药效仍有影响,野燕枯要保证药后12小时不降雨,方能保证药效。
喷药后的土壤湿度对吸收也有影响,因为土壤湿度低,植物组织含水分少,会减缓药剂向生长点的传导。因此,如果喷施2, 4-D时不看具体条件采用同一剂量,不论从提高药效或减少用药量及降低成本都是不利的。
(6)光照
光影响细胞质透性,叶片吸收的除草剂是与光和产物一起移动而传导,在强光下由于移动速度加快而造成叶片内所吸收的除草剂浓度下降,从而促进植物对除草剂的吸收,特别是茎叶处理剂。凡抑制光合作用的除草剂,喷药后光照越强,光合产物越多,药剂随光合产物传导越快,对叶表药剂的吸收也相应加强。光照对植物的蒸腾作用、气孔开度也有影响,较强的光照使蒸腾作用增强,有利于药剂的传导,但强光下气孔开度减小,不利于药剂直接扩散。光照还影响植物茸毛、角质层厚度与特性、叶形、叶片大小以及植株的生育状况,使除草剂雾滴与叶片的的接触状况以及对药液的蒸发和吸收产生差异。对一些非光合作用抑制剂,有的在施药后也需要较强的光照,如二苯醚类的除草剂(除草醚等)都具有光活性化机制,在黑暗中不发生活性作用。
(7)风
微风能够显著促进杂草幼苗的蒸腾作用,尤其是配合高温、低湿,杂草生理活动旺盛,有利于除草剂的叶面吸收和传导。大风反而使蒸腾作用下降,气孔关闭,雾滴在叶表面很快干燥,挥发严重不利于吸收,使某些吸收较慢的药剂效果下降。大风还加重雾滴飘移,使药剂分布不均,影响效果。
(8)剂型与介质反应
除草剂的剂型显著影响吸收,在化合物的极性与吸收之间存在一定的联系,脂溶性低的除草剂如苯氧羧酸类的钾盐和钠盐不易被吸收,特别是介质PH高时;游离酸的极性低,进入角质层迅速,酯类更迅速。低分子酯类虽然容易进入角质层,但往往由于其触杀作用迅速造成局部细胞甚至叶片受害而死亡,故向叶片的其它部位传导困难;而高分子酯类的水溶性与酯溶性大,因此吸收迅速,除草效果好。
茎叶处理剂加水配成水溶液后pH值的高低影响药效,溶液PH的变化不仅引起角质层,而且也引起除草剂的极化作用,从而显著影响除草剂通过角质层的进入,溶液的酸化会降低除草剂、游离酸根与角质层成分的高分子脂肪酸以及组成细胞质蛋白质中氨基酸根的解离作用,在酸性情况下除草剂以分子态进入植株,速度较快;在碱性情况下,由于电离作用,除草剂以离子态进入植株,渗透速度较慢。在通常情况下,不宜以碱水配制水溶液,河水比井水好,人为控制pH值偏酸,使其不解离,以加快吸收速度。在适当加入酸性肥料,如硫酸铵(1%)以后,杂草吸收与传导速度提高三倍以上。草酸、磷酸也能显著提高草甘膦防治多年生杂草的效果。此外,敌草快在使用中加入硫酸铜、二氯化铁等也能促进一些杂草的吸收与传导。
水质对除草剂的活性也有影响,含尘量2%的浊水会降低除草剂的活性;相当于2倍草甘膦的三氯化铁或硝酸锰对草甘膦有明显的钝化作用;这些都是由于三价阳离子对除草剂活性的影响。
(9)助剂的应用 表面活性剂在0.010.1%浓度范围内,水溶液的表面张力下降最显著,高浓度时它溶解于角质成分中并直接毒害叶肉组织。在表面活性剂的作用下,细胞壁能够部分的溶解,因而,细胞内含物流于细胞之间。除表面活性剂外,应用其它一些助剂来改善杂草对除草剂的吸收以提高药效,如在草甘膦水溶液中加入硫酸胺,则吸收与传导数量增加3倍。
3.2影响土壤处理除草剂吸收的因素
(1整地质量
施药前整地质量好坏,直接影响土壤处理剂的药效发挥。整地质量差,地表有植物残株和大土块,造成许多死角接触不到药剂,当湿度充足时,土块的缝隙、残草下面,土块内部遇湿涨开,均能萌发大量杂草。大土块较多的田施药,由于土块表面积较大,单位面积施药剂量减少,从而降低除草效果。此外,土块较大,喷施易挥发的药剂后不能保证混土的质量,使药效大为降低。据调查,整地质量好坏,除草效果可相差50%。所谓整地质量好,要求每平方米土块数小于1个,最大土块直径不超过4cm (小于鸡蛋)。
(2)施药技术
施药技术正确与否直接影响除草效果,施药技术主要包括施药方法和施药适期。具体内容见“除草剂的使用方法” 一节。
(3)土壤质地与有机质含量
这是影响土壤处理剂除草效果的重要因素。土壤质地和土壤有机质含量与吸附作用、淋溶以及微生物降解密切相关,总的来说,土壤有机质含量越高,土壤越粘重,则除草剂在土壤中被吸附越多、被微生物降解越快、淋溶越少,一定量的除草剂效果就越差。例如,当土壤有机质含量分别为4. 8%和7.25%时,每公顷施用氟乐灵1. 08kg(有效成分),除草效果分别为91%和50% ;有机质含量分别为13.8%和4. 5%时,每公顷用甲草胺3. 5 kg,除草剂效果分别为25%和91.7%。因此,为了保证除草效果,必须根据土壤质地和有机质含量调整除草剂的用量。除草剂的品种特性不同,受土壤质地和有机质含量的影响也不同。有些除草剂受土壤有机质的影响比土壤质地的影响大,如阿特拉津等,有些主要受土壤质地的影响,如甲草胺等(见表1 )也有一些药剂受土壤有机质和土壤质地影响均很小。如茅毒,使用剂量主要与使用方法和作物有关,如随着混土深度增加而增加施药量。
俵1)不同土壤条件阿特拉律和甲草胺的使用剂量(有效成分)
漆
阿特航津
甲草肢
3—5
<3
>3
1.U
15
2.3
1.5
2.5
2.8
3.0
粘土
W.5
5.0
3.5
4.0
(4)土壤湿度
土壤含水量通常是影响土壤处理剂药效的最主要因素。土壤含水量与除草剂的吸附作用、挥发、淋溶、化学分解、生物降解均有密切关系。由于杂草从土壤中所能吸收的物质基本上都是水溶液,当土壤湿度较大时,则土壤对除草剂的吸附减弱,土壤中游离态的除草剂增加,便于被杂草吸收,另一方面,土壤湿度大则杂草生理活动旺盛,萌发和生长加快,主体的吸收能力增强,吸入除草剂的量增加,传导也快,除草效果就好;反之,土壤湿度小,施入的除草剂大量被土壤吸附,成为难以移动的束缚态,杂草的主体吸收能力也很弱,淋溶、挥发和分解增加,除草剂的持效期随之缩短。为了克服干旱造成除草效果差的问题,应设法增加土壤湿度,如加大喷液量、泼浇、等待降雨或灌溉等,但要注意对于某些挥发性强或水溶度好的药剂,如氟乐灵、利谷隆、阿特拉津等,为防止过度的挥发或淋溶不宜灌溉用药。混土、盖土并结合镇压保墒能较好地克服干旱对药效的影
响。
(5) 温度和光照
低温使吸附作用加强,较高的温度有利于解吸附,因此,高温有利于提高除草效果。温度对土壤处理剂药效的影响主要是通过杂草的生理状况而起作用。温度较高,杂草萌发和生长较快,吸收和传导能力强。另外,温度较高,光照条件好,杂草的生理活性强、光合作用和呼吸作用旺盛,某些光合抑制剂或呼吸抑制剂能随水分和光合产物的传导到达最终作用位置,从而起到杀草的作用。通常温度越高,杂草发芽和生长越快,除草效果也随之来得快而好。例如,光合抑制剂绿麦隆土壤处理防除看麦娘的效果与气温有很大关系,早播麦田气温较高效果就好,迟播麦随着气温下降,效果也随之下降。温度对土壤处理剂效果的影响与药剂本身也有关,有些药剂药效受温度影响较小,如氟乐灵,只要温度能维持杂草萌芽就能表现药效。温度还会影响药剂在植物体内的降解速度,低温下,除草剂在作物体内降解缓慢,若配合寒流极易使某些除草剂产生药害。温度与除草剂的挥发、光解和降解均有关系,光照则直接导致某些除草剂发生光解。高温强光照使除草剂的持效期缩短,较短的残效期有可能使除草效果下降,但也有利于避免对下茬敏感作物产生药害。
(6) 土壤pH值
土壤pH值与除草剂在土壤中的吸附作用,微生物降解和化学分解有关,偏酸性土壤有助于促进对除草剂的吸附作用和在土壤中降解,而使一定量除草剂的效果下降,持效期缩短。因此,在偏酸性土壤中,用药量应比碱性土壤略有增加,以保证除草效果;在碱性地区则应减少用量,以防某些持效期较长的药剂对下茬敏感作物产生药害。
(7) 风
风首先影响土壤处理的喷药质量。喷药时遇大风,药液随风飘移,一是造成飘移损失;二是造成分布不匀;三是有可能引起周围敏感作物产生药害。东北早春常遇大风,且正是进行土壤处理的施药适期,大风能将表土刮走,使土表的药剂也随之移动,大大影响了除草的效果。此外,风还可加速土表药剂的挥发,土壤湿度较小时,大风不利于保墒,均可使除草效果下降。
展开阅读全文