资源描述
海口市 2025 届高三摸底考试
数学
注意事项:
1
2
.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.
.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改
动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本
试卷上无效.
3
.考试结束后,将本试卷和答题卡一并交回.
一、选择题:本题共 8 小题,每小题 5 分,共 40 分.在每小题给出的四个选项中,只有一项
是符合题目要求的.
{
A
=
x 2 x 5
< < } B = {x x2 - 4x + 3 £ 0}
AI B
=
1
. 若集合
,
,则
(
)
{
> }
{
£ < }
x 1 x 5
x x 2
A.
B.
D.
{x 2 < x £ 3}
C. {x 2 £ x < 3}
【
【
【
答案】D
解析】
分析】根据一元二次不等式化简集合,即可根据交运算求解.
{x x2
+ £ }
B = {x 1£ x £ 3}
,故
B
=
-
4x 3 0
【
故
详解】由于
,
AI B = {x 2 < x £ 3}
,
故选:D
r
1
2
r
a = 1,2
( ),
b = (k,-1)
k = -
2
. 已知向量
,则“
”是“ a∥b ”的(
)
A. 充分不必要条件
B. 必要不充分条件
C. 充要条件
D. 既不充分也不必要条件
【
【
【
答案】C
解析】
分析】根据向量的共线的坐标关系,即可根据充要条件的定义判断.
r
1
2
r
a = 1,2
( ),
b = (k,-1)
2k = -1,解得 k = -
【
详解】由
,若 a∥b ,则
,
1
2
r
k = -
故“
”是“ a∥b ”的充要条件,
第 1 页/共 19 页
故选:C
. 已知函数 f (x)= x - ln x
f (x)
的单调递减区间为(
3
,则
)
A. (-¥,1)
(0,1)
B.
D.
(0,+¥ )
C. (1,+¥)
【
【
【
答案】B
解析】
分析】求导,根据导数为负即可求解.
详解】 f (x)= x - ln x
的定义域为(0, + ∞),
【
1
x -1
¢
( )= -
=
f x
1
,
x
x
x -1
令 f ¢(x) =
< 0
,解得
0 < x <1,
x
故 ( )的单调递减区间为(0,1),
f x
故选:B
a = log 3
c = ln 2
a
c
, 的大小关系为(
4
. 已知
,b 2
=
0.1
,
,则
,b
)
0
.2
A. b > c > a
B. b > a > c
C. c > b > a
D. c > a > b
【
【
答案】A
解析】
a,b,c 与 0,1的大小关系,然后计算即可.
【
分析】判断
a = log 3 < log 1= 0
=1, ln1< ln 2 < ln e Þ 0 < c <1
=
0.1
>
20
【
详解】由题可知
,b 2
0
.2
0.2
故 a < c < b
故选:A
5
. 海口市作为首批“国际湿地城市”,有丰富的湿地资源和独特的生态环境,海口市某中学一研究性学习小
组计划利用 5 月 1 日至 5 月 5 日共 5 天假期实地考察美舍河湿地公园、五源河湿地公园、三江红树林湿地
公园、潭丰洋湿地公园和响水河湿地公园 5 个湿地公园,每天考察 1 个,其中对美舍河湿地公园的考察安
排在 5 月 1 日或 5 月 2 日,则不同的考察安排方法有(
)
A. 24 种
B. 48 种
C. 98 种
D. 120 种
【
答案】B
第 2 页/共 19 页
【
【
解析】
分析】先排特殊,再一般,最后按照计数原理计算即可.
A
1
2
= 2
种;
【
详解】先安排美舍河湿地公园的考察时间,方式有
再安排剩下四天的行程有 A44 = 24 ,所以一共有 2´24 = 48 种安排方法.
故选:B
6
. 如图,在平面四边形 ABCD 中, AC 与 BD 交于点O ,且 AC ^ BD ,OA =1,OB = OC = OD = 2
,
剪去△COD ,将△AOD 沿OA
翻折,
VBOC 沿OB 翻折,使点C
与点 重合于点 ,则翻折后的三
D
P
P - AOB
棱锥
外接球的表面积为(
)
A. 5π
B. 8π
C. 9π
D. 13π
【
【
答案】C
解析】
分析】根据给定条件,可得OA,OB,OP
【
【
两两垂直,再补形成长方体,借助长方体求出球的表面积.
P - AOB 中,OP ^ OB,OP ^ OA,OA ^ OB
详解】依题意,在三棱锥
,
P - AOB 可以补形成以OA,OB,OP
因此三棱锥
为共点三条棱的长方体,
P - AOB
R
该长方体的外接球即为三棱锥
的外接球,设球半径为
,
则 2R = OA2 + OB2 + OP2 = 12 + 22 + 22 = 3 ,
P - AOB
4πR2 = π(2R)2 = 9π
所以三棱锥
外接球的表面积为
.
故选:C
第 3 页/共 19 页
y
2
= 2x
上的动点,则点 P 到直线
y = x + 3
的距离的最小值是(
)
7
. 已知 P 是抛物线
3
2
3 2
5 2
A.
B. 2 2 -1
C.
D.
2
4
4
【
【
答案】D
解析】
(2t
,2t)
,利用点到直线的距离公式结合二次函数的最值可求得点 P 到直线
2
【
分析】设点 P 的坐标为
y = x + 3
的距离的最小值.
【详解】设点 P 的坐标为(2t2 ,2t)
,
2
æ
è
1
ö
ø
5
2
2
çt - ÷ +
x - y + 3 = 0
2t
2
- 2t + 3
则点 P 到直线
的距离为
2
5
1
5 2
4
,
d =
=
³ ´
=
2
2
2
2
1
5
2
当且仅当t =
时, 取最小值
d
.
2
4
5
2
y = x + 3
所以,点 P 到直线
的距离的最小值是
.
4
故选:D.
8. 已知定义在[-3, 3]上的函数 f (x)= ex
- e-x - 2x +1,若 f (m2 )+ f (m - 2)£ 2
m
,则 的取值范围是
(
)
A. [-2,1]
-1, 3ù
[-1, 2]
B.
D.
é
[- ]
1,1
C. ë
û
【
【
答案】D
解析】
g (m2 )£ g (2 - m)
,即可求解.
g x = f x -1
【
【
分析】根据 ( )
( ) 的奇偶性以及单调性,即可将问题转化为
详解】记 g (x)= ex - e-x - 2x, xÎ[-3, 3]
g (-x)= e-x - ex + 2x = -g (x)
,则
,
故 ( )为
[-3, 3]的奇函数,
g x
又 g¢(x) = ex + e-x - 2 ³ 2 exe-x - 2 = 0 ,
g x
因此 ( )为
[-3, 3]上的单调递增函数,
第 4 页/共 19 页
因为 f (x)= g (x)+1
,
(
)+ ( - ) £
( )+ ( - )+ £
( )£ ( - )
g m2 g 2 m
,进而
f m2
f m 2
2
g m2
g m 2 2 2
由
可得
,
故 -3 £ m2 £ 2 - m £ 3,解得 -1£ m £1,
故选:D
二、选择题:本题共 3 小题,每小题 6 分,共 18 分.在每小题给出的选项中,有多项符合题
目要求.全部选对的得 6 分,部分选对的得部分分,有选错的得 0 分.
9
. 某校为了解学生的身体状况,随机抽取了 50 名学生测量体重,经统计,这些学生的体重数据(单位:
千克)全部介于 45 至 70 之间,将数据整理得到如图所示的频率分布直方图,则(
)
a
A. 频率分布直方图中 的值为 0.04
B. 这 50 名学生体重的众数约为 52.5
C. 该校学生体重的上四分位数约为 61.25
D. 这 50 名学生中体重不低于 65 千克的人数约为 10
【
【
【
答案】ABC
解析】
分析】利用频率之和为 1 可判断选项 A,利用频率分布直方图中众数的计算方法求解众数,即可判断选
项 B,由分位数的计算方法求解,即可判断选项 C,利用频率即可计算个数求解 D.
【
详解】由
(0.01+ 0.07 + 0.06 + a + 0.02)´5 =1,解得 a = 0.04
,故选项 A 正确;
5
0 + 55
= 52.5 ,故选项 B 正确;
5
0 名学生体重的众数约为
2
因为体重不低于 60 千克的频率为 0.3,而体重在[
60 , 65)
0.04´5 = 0.2
的频率为
,
1
所以计该校学生体重的 75% 分位数约为 60 + 5´ = 61.25 ,故选项 C 正确.
4
体重不低于 65 千克的频率为 0.02´5 = 0.1,
第 5 页/共 19 页
所以这 50 名学生中体重不低于 65 千克的人数为 0.1´50 = 5人,故选项 D 错误;
故选:ABC.
f x = Asin wx +j A > 0,w > 0,0 < j < π
0. 函数 ( )
(
)(
)的部分图象如图所示,则下列命题正确的是
1
(
)
A. w = 2
π
B. j =
3
2
π
C. ( )关于
f x
x =
对称
3
π
D. 将函数 ( )的图象向右平移 个单位长度得到函数
f x
h(x)= 2 sin 2x
6
【
【
答案】AC
解析】
π
T
5π
π
1
4
2π
w
=
-
=
´
可得w = 2 ,代入最高点可得j = ,进而求出函数
f (x)
的表达式,即
【
分析】根据
4
12
6
6
可判断 AB,代入验证即可判断 C,根据平移即可求解 D.
T
5π
π
1
4
2π
w
π
=
-
=
´
,解得T = π ,w = 2 ,
【
详解】由图象可知 A = 2 ,
4
12
6
π
π
π
f ( ) = 2
2sin( +j) = 2
+j = + 2kπ,k Î Z
又
,所以
,即
,得
,
6
3
3
2
π
π
0
< j < π
k = 0,j =
f (x)
f (x) = 2sin(2x + )
的表达式为 ,故 A 正确,B 错误,
结合
,可知
6
6
2
π
对于 C,由于 f (2π) = 2sin( + ) = 2sin
4π
π
3π
的图象关于
对称,故 C 正确;
= -2 ,即
f (x)
x =
3
3
6
2
3
π
π
π
π
f (x)
g(x) = 2sin[2(x - ) + ] = 2sin(2x - )
对于 D,函数
的图象向右平移 个单位长度可以得到函数
6
,
6
6
6
故 D 错误.
故选:AC.
A -a,0
1. 在平面直角坐标系中,已知两定点 (
),
B(a,0)
1
,直线
PA
, PB 相交于点 P ,且直线 PA 与直
m
m ¹ 0 a 0
,
>
线 PB 的斜率之积为 ,其中
.下列选项正确的是(
)
第 6 页/共 19 页
A. 当 m = -1时,动点 P 的轨迹为以原点为圆心,半径为 的圆,且除去(-a,0),(a,0)两点
a
B. 当 m > 0时,动点 P 的轨迹为焦点在 轴上的双曲线,且除去(-a,0),(a,0)两点
x
C. 当 m < 0 且 m ¹ -1时,动点 P 的轨迹为焦点在 轴上的椭圆,且除去(-a,0),(a,0)两点
x
D. 当 m = 2 , a = 3 时,动点 P 的轨迹为曲线C ,过点( )且倾斜角为
,0
交于
,
3
30°的直线与曲线C
M
1
6 3
5
N 两点,则 MN =
【
【
答案】ABD
解析】
y
y
x
2
2
y
2
分析】设点 (
),显然
,
=1,然后根据不同选项
P x, y
x ¹ ±a , y ¹ 0
´
= m Þ
-
【
x - a x + a
a
ma2
的情况判断即可.
y
y
x
2
2
y
2
详解】设点 (
),显然
,
P x, y
x ¹ ±a , y ¹ 0
´
= m Þ
-
=1
【
x - a x + a
a
ma2
当 m = -1时,得
x
2
+ y2 = a2 x ¹ ±a , y ¹ 0
,所以有动点 的轨迹为以原点为圆心,半径为 的圆,
且
P
a
且除去(-a,0),(a,0)两点,故选项 A 正确;
y
y
x
2
2
y
2
m > 0
´
= m Þ
-
=1,显然
a
2
> 0,ma2 > 0
因为 ,所以动
x ¹ ±a , y ¹ 0
当
时,有
x - a x + a
a
ma2
点 P 的轨迹为焦点在 轴上的双曲线,且除去(-a,0),(a,0)两点,故选项 B 正确;
x
x
2
2
y
2
m < 0 m ¹ -1时,显然 x ¹ ±a y ¹ 0
a
> 0,-ma2 > 0
+
=1,得
2
当
且
,
,
a
-ma2
当 a2 > -ma2 > 0 ,即 -1< m < 0 时,得动点 P 的轨迹为焦点在 轴上的椭圆,且除去(-a,0),(a,0)两
x
m < -1时,得动点
P
的轨迹为焦点在
y
轴上的椭圆,且除去(-a,0) (a,0)
,
两
点;当 a2 < -ma2 ,即
点,故选项 C 错误;
x
2
y
2
当 m = 2 , a = 3 时,得动点 P 的轨迹为曲线C 的方程为
-
=1,
3
6
3
过点( )且倾斜角为
30°
的直线方程为 y
3
,0
=
-
x
3
3
第 7 页/共 19 页
M x , y
), N (x , y )
(
设
1
1
2
2
x
2
y
2
3
5
3
-
=1, y =
x - 3 ,化简得
x
2
+ 2x -9 = 0
联立方程
3
6
3
5
D
= 4 + 4´ ´9 > 0
得
3
2
7
6
x x = - , x + x = -
利用韦达定理可知
1
2
1
2
5
5
2
æ
ö
÷
2
3
æ
6
ö
æ
è
27
ö
16 3
5
所以 MN = 1+ ç
ç- ÷ - 4´ç- ÷ =
,故选项 D 正确.
÷
ç
3 ø è 5 ø
5 ø
è
故选:ABD
三、填空题:本题共 3 小题,每小题 5 分,共 15 分.
8
2. 已知 2a = 3,
2
b
=
a + b =
,则 ______.
1
3
【
【
【
答案】3
解析】
分析】利用指数的运算法则计算即可.
8
2
a+b = 2a ´2b = 3´ = 8 = 23 Þ a + b = 3
【
详解】由题可知
3
故答案为:3
3. 记VABC 的内角 A , B ,C 的对边分别为 ,b , ,已知
a
c
c =1,且
1
(
-
),则 = ______.
b
asin A 2b sin B sinC cos A
=
【
【
【
答案】1
解析】
分析】根据正余弦定理边角互化即可求解.
asin A = 2b sin B -sinC cos A)以及正弦定理可得 a = 2b(b - ccos A)
(
2
【
故
详解】由
,
a
2
=
2b2 2bccos A = 2b2
-
-( + - )
b
2
c
2
a
2
,即b2 c2 ,
=
故b = c =1.
故答案为:1.
f x = ex x + 2 - ax
4. 已知函数 ( )
(
)
x
f (x0 ) < 0
,则实数 的取值范围是
a
1
_
,若存在唯一的负整数 ,使得
0
_____.
第 8 页/共 19 页
é
ë
1
1 ö
,
【
【
【
答案】
解析】
ê
÷
2e4 3e3
ø
ex
(x + 2)
e
x
(x + 2)
分析】当 x < 0 时,由 f (x)< 0
可得出 a
,其中
x < 0
,利用导数
<
( ) =
,令 g x
x
x
分析函数 ( )在
(-¥,0)
上的单调性与极值,数形结合可得出实数 的取值范围.
g x
a
ex
(x + 2)
详解】当 x < 0 时,由 f (x)= ex x + 2 - ax < 0
(
)
可得
ax > ex (x + 2)
,则 a
,
<
【
x
ex
(x + 2)
(x2 + 2x - 2)ex
令 g (x) =
,其中 x < 0 ,则 g¢(x) =
,
x
x2
当 x < 0 时,令 g¢(x)= 0
,可得 x = -1- 3 ,列表如下:
(-¥,-1- 3)
(-1- 3,0)
x
-1-
3
¢
( )
g x
+
0
-
(
)
增
极大值
减
g x
1
1
2e4
且 -3 < -1- 3 < -2 , g (-3) =
,
g (-2)= 0, g (-4) =
,如图所示:
3e
3
x
f (x0 )< 0
a < g (x )
,即
要使得存在唯一的负整数 ,使得
,
0
0
1
1
3e3
g -4 £ a < g -3
只需 ( )
( ),即
£ a <
,
2
e
4
é
ë
1
1 ö
a
因此,实数 的取值范围是
,
÷
.
ê
2e4 3e3
ø
é
ë
1
1 ö
,
故答案为:
ê
÷
.
2e4 3e3
ø
【
点睛】导函数中常用的两种常用的转化方法:一是利用导数研究含参函数的单调性,常化为不等式恒成
第 9 页/共 19 页
立问题.注意分类讨论与数形结合思想的应用;二是函数的零点、不等式证明常转化为函数的单调性、极
(最)值问题处理.
四、解答题:本题共 5 小题,共 77 分.解答时应写出文字说明、证明过程或演算步骤.
{a }
2S = 3a -1
的前 项和,已知
.
.
S
n
1
5. 记 为数列
n
n
n
n
1)求{ }的通项公式;
a
n
(
(
【
b = a + log a
{b }
n
2)设
,求数列
的前 项和T
n
n
3
n
n
n
a = 3n-1
答案】(1)
n
3
n
+ n2 - n -1
(
2)Tn =
2
【
【
解析】
分析】(1)令
n =1,可求出
a
1
的值;令
n ³ 2
,由
2S = 3a -1
2Sn-1 = 3an-1 -1,两个等式作差
可得
n
n
推导出数列{ }为等比数列,确定该数列的首项和公比,即可求出数列
{a }
的通项公式;
a
n
n
b
n
T
n
(
【
2)求出数列{ }的通项公式,利用分组求和法可求得
.
小问 1 详解】
{a }
2S = 3a -1
,
S
解:因为 为数列
n
的前 项和,且
n
n
n
n
n =1时,则有 2a = 3a -1
,解得
a =1
1
;
当
1
1
当 n ³ 2 时,由
2
S = 3a -1
2Sn-1 = 3an-1 -1,
可得
n
n
2
a = 3a -3a
a = 3a
,整理得
n-1
上述两个等式作差可得
,
n
n
n-1
n
所以,数列{ }是以1为首项,以 为公比的等比数列,
3
a
n
a =1´3n-1
n
= 3n-1 .
因此,
【
小问 2 详解】
b = a + log a = 3n-1 + log3 3n-1 = 3n-1 + n -1
(
),
解:因为
n
n
3
n
( + )+ ( + )+ ( + )+L+ é
+ ( - )ù
所以,Tn
=
3
0
0
3
1
1
3
2
2
ë3n 1 n 1 û
-
( +
)+ é + + +L+ ( - )ù
=
3
0
3
1
+
3
2
+L+
3n-1
ë0 1 2
n 1 û
第 10 页/共 19 页
( + - )
1-
3
n
0 n 1 n
3
n
+
n
2
- n -1
=
+
=
.
1
-3
2
2
ABCD - A B C D
A D
的中点.
1
6. 如图,在正四棱柱
中, AB 2 ,点 满足 AE 2EB ,
=
E
=
F
是
1
1
1
1
1
1
B
(
1)证明:过 、 E 、 F 三点的平面截正四棱柱所得的截面为梯形;
1
8
3
AA1 =
F - B1E - B
的正弦值.
(
【
(
2)若
,求二面角
答案】(1)证明见解析
1
9
7
2)
【
【
解析】
分析】(1)以点 A 为坐标原点, AB 、 AD 、 AA1 的方向分别为
x
y
z
、
、
轴的正方向建立空间直角坐
AD 于点G(0,b,0)
B EF
EG//B1F
EG//B1F
标系,设平面
交棱
,利用面面平行的性质可得出
,由此可证得结论成立;
,根据
求
1
EG ¹ B1F
出b 的值,可得出
F - B1E - B
的正弦值.
(
2)利用空间向量法结合同角三角函数的基本关系可求得二面角
【
小问 1 详解】
ABCD - A B C D
证明:在正四棱柱
中,以点 A 为坐标原点, AB 、 AD 、
AA
的方向
1
1
1
1
1
x
y
z
分别为
、
、
轴的正方向建立如下图所示的空间直角坐标系,
第 11 页/共 19 页
AD 于点G(0,b,0)
B EF
1
设平面
交棱
,
æ
è
4
ö
ø
AA1 = a
B (2,0,a) F (0,1,a) E ç ,0,0÷
设
,则
、
、
,
1
3
B EF Ç
1
ABCD = EG
ABCD//
A B C D
因为平面
平面
,平面
平面
,
1
1
1
1
B EF Ç
A B C D = B F
EG//B1F
平面
因为
平面
,所以,
,
1
1
1
1
1
1
u
uur æ 4
ö
B F = -2,1, 0
(
),
EG = ç- ,b,0÷
,
1
è 3
ø
æ
è
4
ö
ø
ç- ,b,0÷ = l (-2,1, 0)
EG//B1F
EG = lB1F
因为
,设
,即
,
3
ì
4
uuur 2 uuuur
EG = B F
ï
-2l = -
2
2
3 ,解得 l = ,所以,
,即
EG//B1F EG = B F
且
,
所以, í
1
1
3
3
3
ï
l = b
î
B
因此,过 、 E 、 F 三点的平面截正四棱柱所得的截面为梯形.
1
【
小问 2 详解】
8
3
æ
è
8 ö
3 ø
æ 4
è 3
ö
ø
æ
è
8 ö
3 ø
B(2, 0, 0) B ç2, 0, ÷ E ç ,0,0÷ F ç0, 1, ÷
AA1 =
解:因为
,则
、
、
、
,
1
u
uur æ 2 8 ö
(-2,1, 0), EB = ç ,0, ÷ ,
è 3 3 ø
B1F
=
1
r
ì
m× B F = -2x + y = 0
ï
1
B EF
1
í r uuur
设平面
的法向量为푚 = (푥,푦,푧),则
2
3
8
3
,
m EB
×
=
x
+
z = 0
ï
î
1
取 x = 4 ,则
y = 8, z = -1,所以, mr = (4,8,-1)
,
第 12 页/共 19 页
BB1E
易知平面
的一个法向量为푛 = (0,1,0),
r
r
m×n
m × n
8
9
cosm,n = r r =
所以,
所以,
,
r
r
r r
64
17
9
sin m,n = 1- cos2 m,n = 1-
=
,
8
1
1
7
F - B1E - B
因此,二面角
的正弦值为
.
9
1
7. 制定适合自己的学习计划并在学习过程中根据自己的实际情况有效地安排和调整学习方法是一种有效
的学习策略.某教师为研究学生制定学习计划并坚持实施和数学成绩之间的关系,得到如下数据:
>
120
£120
成绩
分
成绩
分
合计
6
20
制定学习计划并坚持实施
没有制定学习计划
合计
14
2
28
34
30
1
6
50
(
1)依据小概率值a = 0.001的独立性检验,能否认为“制定学习计划并坚持实施”和“数学成绩高于
1
20分”有关联?
(
2)若该校高三年级每月进行一次月考,该校学生小明在高三开学初认真制定了学习计划,其中一项要
求自己每天要把错题至少重做一遍,做对为止.以下为小明坚持实施计划的月份和他在学校数学月考成绩
的校内名次数据:
11月初
12月初
次年1月初 次年 2 月初 次年 月初
3
月考时间
x
3
5
时间代码
1
2
4
月考校内名次
8
81
857
729
569
475
y
5
å
x y = 9433
y
=
702.2
参考数据:
,
.
i
i
i=1
y
x
= ˆ +
(
ⅰ)求月考校内名次 与时间代码 的线性回归方程 yˆ bx aˆ ;
第 13 页/共 19 页
(
ⅱ)该校老师给出了上一年该校学生高考( 月初考试)数学成绩在校内的名次和在全省名次的部分数
据:
校内名次
6
w
5
100
257
300
200
666
全省名次u
20
2
780
利用数据分析软件,根据以上数据得出了两个回归模型和决定系数 R2 :
模型①
模型②
uˆ = 9.5wˆ - 449
uˆ = 28e0.016wˆ
R
2
» 0.7927
R
2
» 0.9973
在以上两个模型中选择“较好”模型(说明理由),并结合问题(ⅰ)的回归方程,依据“较好”模型预测
小明如果能坚持实施学习计划,他在次年高考中数学成绩的全省名次(名次均保留整数).(参考数据:
e2.272 » 9.7 , e2.432 »11.4 , e0.672 » 2.0)
(
- )2
n ad bc
附:(ii)
c
2
=
,其中
n = a + b + c + d
.
(
+ )( + )( + )( + )
a b c d a c b d
.05 0.01
3.841 6.635
x , y
a
0
0.005
7.879
0.001
xa
10.828
ˆ +
=
(
i)对于一组数据(
)(i =1, 2, 3,¼,n),其回归直线 y bx a 的斜率和截距的最小二乘估计分别
ˆ
ˆ
i
i
n
n
å
å
xi yi - nxy
(
- )( - )
xi
x
y
i
y
ˆ =
b
i=1
=
i=1
, a = y -bx .
ˆ
为:
ˆ
n
n
å
(xi - )2
å
x
xi2 - nx
2
i=1
i=1
【
答案】(1)依据小概率值a = 0.001的独立性检验,能认为“制定学习计划并坚持实施”和“数学成绩
高于120分”有关联
yˆ = -110x +1032.2 ,(ⅱ)模型②较好,全省名次预测为319
(
【
【
(
2)(ⅰ)
解析】
分析】(1)计算卡方,即可与临界值比较作答,
2)根据最小二乘法即可求解回归方程,利用决定系数的大小比较即可选择模型②,代入方程即可求解
名次.
第 14 页/共 19 页
【
小问 1 详解】
H
:制定学习计划并坚持实施和数学成绩高于120分没有关联
零假设
0
(
´ - ´ )2
0 6 2 14 28
5
因为 c
2
=
» 22.120 >10.828 ,
3
4´16´20´30
依据小概率值a = 0.001的独立性检验认为
H
0
不成立,
即认为“制定学习计划并坚持实施”和“数学成绩高于 120 分”有关联
【
(
小问 2 详解】
1
x = (1+ 2 + 3+ 4 + 5) = 3
ⅰ)
,
5
1
y = (881+ 857 + 729 + 569 + 475) = 702.2 ,
5
n
å
x y - nxy
i
i
9433 - 5´3´ 702.2
1+ 4 + 9 +16 + 25 - 5´9
-1100
\
ˆ =
b
=1
=
=
= -110
i
,
n
10
å
xi
2
- nx
2
i=1
aˆ
=
y
bx 702.2 110 3 1032.2.
- ˆ =
+
´ =
\
yˆ = -110x +1032.2
回归直线方程为
,
模型②较好,由于模型② R2 » 0.9973与模型① R2 » 0.7927 相比较,模型②决定系数 R2 大于模型①,
因此拟合效果更好,
yˆ = -110x +1032.2
,当六月初月考时,
x = 8,小明的月考校内名次预测值为
由于回归直线方程为
yˆ = -110´8 +1032.2 »152
,
故省内排名预测为uˆ = 28e0.016´152 = 28e2.432 » 319.
f x = x2 - 2a +1 x + aln x aÎR).
1
8. 已知函数 ( )
(
)
(
y = f (x)在
x =1处的切线方程;
(
(
(
【
1)当 a =1时,求函数
2)讨论 ( )的单调性;
f x
g x = f x - x2 - a -1 ln x 有两个不同的零点x
3)若 ( )
( )
(
)
x
2
a
,求 的取值范围.
,
1
y = -2
答案】(1)
1
2
1- e
-
< a <
(
【
2)答案见解析
(3)
2e
解析】
第 15 页/共 19 页
【
(
分析】(1)求导,即可求解,
a
2)求导,对 进行讨论,即可根据导数的正负确定函数的单调性,
ln x
ln x
2
a +1=
h(x) =
,构造
(
【
3)将问题转化为
,即可利用导数确定函数的单调性求解.
x
x
小问 1 详解】
1
当 a =1时, f (x)= x2 -3x + ln x
,则
f ¢(x)= 2x -3+
,
x
故 f ¢(1)= 2 -3+1= 0, f 1 =1-3+ 0 = -2
( )
,
故푦 = 푓(푥)在 x =1处的切线方程为
y = -2
【
小问 2 详解】
2x2 -(2a +1)x + a (2x -1)(x - a)
a
x
¢
( )= -( + )+
=
=
f x 2x 2a 1
,
x
x
1
2
1
2
1
2
a >
x > a 或 0 < x <
< x < a
当
时,令푓′(푥) > 0,解得
,令푓′(푥) < 0,解得
,
æ
è
1 ö
2 ø
æ 1
è 2
ö
ø
故此时 ( )在
ç0, ÷,(a,+¥ )
单调递增,在
的单调递减,
f x
ç ,a÷
1
( )
在(0, + ∞)单调递增,
a =
f x
当
当
时,푓′(푥) ≥ 0在(0, + ∞)上恒成立,故此时
2
1
2
1
2
1
0
< a <
时,令푓′(푥) > 0,解得
x >
0 < x < a
a < x <
,令푓′(푥) < 0,解得
或
,
2
æ
è
1
ö
ø
æ
è
1 ö
2 ø
故此时 ( )在
(0,a),ç ,+¥ ÷
单调递增,在
的单调递减,
f x
ça, ÷
2
æ
è
1 ö
2 ø
æ 1
è 2
ö
ø
当 a = 0 时, f (x)= x2 - x
,故
f (x) ç0, ÷
在
的单调递减,在
ç ,+¥ ÷
单调递增,
1
2
1
当 a < 0 时,令푓′(푥) > 0,解得
x >
,令푓′(푥) < 0,解得
0 < x <
,
2
æ
1 ö
æ 1
è 2
ö
ø
故此时 ( )在è 2 ø
的单调递减,在
ç ,+¥ ÷
单调递增,
f x
ç0, ÷
【
小问 3 详解】
(
)= ( )- -( - )
x2
展开阅读全文