收藏 分销(赏)

年产1万吨二甲醚工艺设计-大学毕业设计.doc

上传人:鼓*** 文档编号:9901864 上传时间:2025-04-12 格式:DOC 页数:24 大小:367.50KB
下载 相关 举报
年产1万吨二甲醚工艺设计-大学毕业设计.doc_第1页
第1页 / 共24页
年产1万吨二甲醚工艺设计-大学毕业设计.doc_第2页
第2页 / 共24页
点击查看更多>>
资源描述
本科课程设计 题 目:年产1万吨二甲醚工艺设计 专 业:应用化学 学 院:化学与生命科学学院 化工设计课程设计题目 1.设计项目:2万吨/年甲醇下游产品加工车间初步设计 2.产品名称:年产1万吨二甲醚工艺初步设计与平面布置 3.甲醇规格:纯度99%(附属材料自定,甲醇由工艺管道送至车间) 4.年生产能力:处理2万吨/年甲醇 5.设计要求: (1)生产产品的确定与设计; (2)化工工艺流程设计及分析; (3)完成化工工艺设计计算 (4)化工设备设计的工艺计算; (5)绘制完成带控制点工艺流程图; (6)结合给排水、供电等方案作总投资概念和技术经济分析。 (7)编制完整的设计说明书 目 录 前言 化工设计课程设计题目 错误!未定义书签。 前 言 1 1 文献综述 1 1.1 二甲醚概述 1 1.1.1 二甲醚的发展现状 1 1.1.2 二甲醚的传统领域的应用及其拓展 1 1.2国内二甲醚市场简况 2 1.2.1现状 2 1.2.2 国内市场预测 3 1.3国外二甲醚市场简况 4 1.3.1现状 4 1.3.2 国外市场预测 5 1.4 原料说明 5 1.6 二甲醚的主要技术指标 7 1.6.1技术要求 7 1.6.2试验方法 7 2 DME产品方案及生产规模 10 2.1 产品品种、规格、质量指标及拟建规模 10 2.2 产品规格、质量指标 10 2.3 产品方案分析及生产规模分析 11 3 工艺流程介绍 11 3.1生产方法简述 11 3.2工艺流程说明 13 3.3生产工艺特点 15 3.4主要工艺指标 15 3.4.1 二甲醚产品指标 15 3.4.2 催化剂的使用 15 4主要塔设备计算及选型 16 4.1 汽化塔及其附属设备的计算选型 16 4.1.1 物料衡算 错误!未定义书签。 4.1.2 热量衡算 错误!未定义书签。 4.1.3 理论板数、塔径、填料选择及填料层高度的计算 错误!未定义书签。 4.1.4 汽化塔附属设备的选型计算 错误!未定义书签。 4.2 合成塔及其附属设备的计算选型 16 4.2.1 物料衡算 错误!未定义书签。 4.2.2 合成塔的选取选取: 错误!未定义书签。 4.2.3 热量衡算及附属设备的选型计算 错误!未定义书签。 4.3 精馏塔及其附属设备的计算选型 错误!未定义书签。 4.3.1 物料衡算 17 4.3.2 热量衡算 错误!未定义书签。 4.3.3 理论塔板数的计算 错误!未定义书签。 4.3.4 初馏塔主要尺寸的设计计算 错误!未定义书签。 4.3.5塔径设计计算 错误!未定义书签。 4.3.6 填料层高度的计算 错误!未定义书签。 4.3.7 附属设备的选型计算 错误!未定义书签。 4.4 回收塔及其附属设备的计算选型 17 4.5.1 物料衡算 错误!未定义书签。 4.4.2 热量衡算 错误!未定义书签。 4.4.3 理论塔板数的计算 错误!未定义书签。 4.4.4 回收塔主要尺寸的设计计算 错误!未定义书签。 4.4.5塔径设计计算 错误!未定义书签。 4.4.6 填料层高度的计算 错误!未定义书签。 4.4.7 附属设备的选型计算 错误!未定义书签。 致谢 错误!未定义书签。 参考文献 19 附录1.主要设备一览表 20 2 前 言 作为LPG和石油类的替代燃料,目前二甲醚(DME)倍受注目。DME是具有与LPG的物理性质相类似的化学品,在燃烧时不会产生破坏环境的气体,能便宜而大量地生产。与甲烷一样,被期望成为21世纪的能源之一。目前生产的二甲醚基本上由甲醇脱水制得,即先合成甲醇,然后经甲醇脱水制成二甲醚。甲醇脱水制二甲醚分为液相法和气相法两种工艺,本设计采用气相法制备二甲醚工艺。将甲醇加热蒸发,甲醇蒸气通过γ-AL2O3催化剂床层,气相甲醇脱水制得二甲醚。气相法的工艺过程主要由甲醇加热、蒸发、甲醇脱水、二甲醚冷凝及精馏等组成。 二甲醚为易燃气体。与空气混合能形成爆炸性混合物。接触热、火星、火焰或氧化剂易燃烧爆炸。接触空气或在光照条件下可生成具有潜在爆炸危险性的过氧化物,密度比空气大,能在较低处扩散到相当远的地方,遇火源会着火回燃。若遇高热,容器内压增大,有开裂和爆炸的危险。二甲醚的理化性质比较独特,热植高,无毒、无害,具有潜在的广泛用途,除作为有机化工原料广泛用于制药、染料、农药等,还用于替代氟里昂用作汽溶胶喷射剂和制冷剂,由于其良好的燃料性能,具有实用、通用、环保、安全、质优价廉的优点,最近作为民用代用燃料和柴油代用燃料,二甲醚受到人民的日益重视。 20世纪70年代,二甲醚开始被用作气雾剂,以取代破坏臭氧层的氟里昂。近几年来,在各国寻求清洁燃料的过程中,二甲醚的良好燃烧性能和低污染排放的特性使其日益受到重视。二甲醚作为清洁燃料具备如下特征:(1)资源量丰富,来源广;(2)环境友好,其排放物对环境的影响很小;(3)技术可行、成熟,可在大范围内使用;(4)经济可行,其成本有竞争力;(5)易于实现,其运行所需要的基础设施和现有基础设施基本相容,不需要另装一套装置。 本设计流程简洁明畅,工艺条件温和,操作简易方便。而且设备台数较少,设备制作立足于国内现状,均能在国内制造而不需进口,可大大降低项目投资。按国家现行基本建设政策和市场价格对本项目进行了财务评价计算。工程总投资估算值 万元,项目的内部收益率所得税前为 ,高于基准收益率12%。其它各项效益指标及盈亏平衡分析结果均表明本项目具有很强的抗风险能力。上述各方面问题的研究结果表明,4万吨/年二甲醚项目符合国家产业政策和未来能源市场发展方向,市场预测乐观,工艺方案合理,工艺技术成熟可靠,投资估算和财务评价结果也表明项目经济效益明显。 本设计包括设计说明书和图纸两部分。说明书主要包括工艺流程的确定,物料衡算,热量衡算,工艺设备的设计及选型,厂房平面布置,还有进行初步的经济分析等。图纸包括工艺流程图,主设备图,车间布置平面等。 1 文献综述 二甲醚(Dimethyl Ether,简称 DME)习惯上简称甲醚,为最简单的脂肪醚,分子式C2H6O,是乙醇的同分异构体,结构式CH3—O—CH3,分子量46.07,是一种无色、无毒、无致癌性、腐蚀性小的产品。DME因其良好的理化性质而被广泛地应用于化工、日化、医药和制冷等行业,近几年更因其燃烧效果好和污染少而被称为“清洁燃料”,引起广泛关注。 1.1 二甲醚的用途 (1)替代氯氟烃作气雾剂[1] 随着世界各国的环保意识日益增强,以前作为气溶工业中气雾剂的氯氟烃正逐步被其他无害物质所代替。 (2)用作制冷剂和发泡剂 由于DME的沸点较低,汽化热大,汽化效果好,其冷凝和蒸发特性接近氟氯烃,因此DME作制冷剂非常有前途。国内外正在积极开发它在冰箱、空调、食品保鲜剂等方面的应用,以替代氟里昂。关于DME作发泡剂,国外已相继开发出利用DME作聚苯乙烯、聚氨基甲酸乙酯、热塑聚酯泡沫的发泡剂。发泡后的产品,孔的大小均匀,柔韧性、耐压性、抗裂性等性能都有所增强。 (3)用作燃料 由于DME具有液化石油气相似的蒸气压,在低压下DME变为液体,在常温、常压下为气态,易燃、毒性很低,并且DME的十六烷值(约55) 高,作为液化石油气和柴油汽车燃料的代用品条件已经成熟。由于它是一种优良的清洁能源,已日益受到国内外的广泛重视。在未来十年里,DME作为燃料的应用将有难以估量的潜在市场,其应用前景十分乐观。可广泛用于民用清洁燃料、汽车发动机燃料、醇醚燃料。 (4)用作化工原料 DME作为一种重要的化工原料,可合成多种化学品及参与多种化学反应:与SO3反应可制得硫酸二甲酯;与HCl反应可合成烷基卤化物;与苯胺反应可合成N , N - 二甲基苯胺;与CO反应可羰基合成乙酸甲酯、醋酐,水解后生成乙酸;与合成气在催化剂存在下反应生成乙酸乙烯;氧化羰化制碳酸二甲酯; 与H2S反应制备二甲基硫醚。此外,利用DME还可以合成低烯烃、甲醛和有机硅化合物。 目前,全球二甲醚总生产能力约为21万t/a,产量16万t/a左右,表1-1为世界二甲醚主要生产厂家及产量。我国二甲醚总生产能力约为1.2万t/a,产量约为0.8万t/a,表1-2为我国二甲醚主要生产厂家及产量。 据市场调查国内二甲醚需求量远远超过供给量,目前国内仅气雾剂一项需求量达到1.5~1.8 万吨/年,而高纯度的二甲醚还依赖进口。二甲醚市场应用前景广阔,因此对二甲醚的生产工艺进行研究很有必要。 1.2 设计依据 本项目基于教科书上的教学案例,通过研读大量的关于DME性质、用途、生产技术及市场情况分析的文献,对生产DME的工艺过程进行设计的。 1.3 技术来源 目前合成DME有以下几种方法:(1)液相甲醇脱水法(2)气相甲醇脱水法(3)合成气一步法(4)CO2 加氢直接合成。(5)催化蒸馏法。其中前二种方法比较成熟,后三种方法正处于研究和工业放大阶段。本设计采用气相甲醇脱水法。下面对这几种方法作以介绍。 1.3.1 液相甲醇脱水法制二甲醚 甲醇脱水制DME 最早采用硫酸作催化剂,反应在液相中进行,因此叫做液相甲醇脱水法,也称硫酸法工艺。该工艺生产纯度99.6%的DME 产品, 用于一些对DME纯度要求不高的场合。其工艺具有反应条件温和(130~160) ℃、甲醇单程转化率高( >85%) 、可间歇也可连续生产等特点, 但是存在设备腐蚀、环境污染严重、产品后处理困难等问题,国外已基本废除此法。中国仍有个别厂家使用该工艺生产DME,并在使用过程中对工艺有所改进。 1.3.2 气相甲醇脱水法制二甲醚 气相甲醇脱水法是甲醇蒸气通过分子筛催化剂催化脱水制得DME。该工艺特点是操作简单,自动化程度较高,少量废水废气排放,排放物低于国家规定的排放标准。该技术生产DME采用固体催化剂催化剂,反应温度200℃, 甲醇转化率达到75%~85%,DME选择性大于98%,产品DME质量分数≥99.9 %,甲醇制二甲醚的工艺生产过程包括甲醇加热、蒸发,甲醇脱水,甲醚冷却、冷凝及粗醚精馏,该法是目前国内外主要的生产方法。 1.3.3 合成气一步法生产二甲醚 合成气法制DME 是在合成甲醇技术的基础上发展起来的,由合成气经浆态床反应器一步合成DME,采用具有甲醇合成和甲醇脱水组分的双功能催化剂。因此,甲醇合成催化剂和甲醇脱水催化剂的比例对DME 生成速度和选择性有很大的影响,是其研究重点。其过程的主要反应为: 甲醇合成反应 (1) 水煤气变换反应 (2) 甲醇脱水反应 (3) 在该反应体系中,由于甲醇合成反应和脱水反应同时进行,使得甲醇一经生成即被转化为DME,从而打破了甲醇合成反应的热力学平衡限制,使CO转化率比两步反应过程中单独甲醇合成反应有显著提高。 由合成气直接合成DME,与甲醇气相脱水法相比,具有流程短、投资省、能耗低等优点,而且可获得较高的单程转化率。合成气法现多采用浆态床反应器,其结构简单,便于移出反应热,易实现恒温操作。它可直接利用CO含量高的煤基合成气,还可在线卸载催化剂。因此, 浆态床合成气法制DME具有诱人的前景,将是煤炭洁净利用的重要途径之一。合成气法所用的合成气可由煤、重油、渣油气化及天然气转化制得,原料经济易得,因而该工艺可用于化肥和甲醇装置适当改造后生产DME,易形成较大规模生产;也可采用从化肥和甲醇生产装置侧线抽得合成气的方法,适当增加少量气化能力,或减少甲醇和氨的生产能力,用以生产DME。 但是,目前合成气法制DME的研究国内仍处于工业放大阶段,有上千吨级的成功的生产装置,如山西煤化所、清华大学、杭州大学催化剂研究所等都拥有这方面的技术。兰州化物所、大连化物所、湖北化学研究所的催化剂均已申请了专利。清华大学加大了对浆态床DME合成技术的研究力度,正与企业合作进行工业中试研究,在工业中试成功的基础上,将建设万吨级工业示范装置。 1.3.4 二氧化碳加氢直接合成二甲醚 近年来,CO2加氢制含氧化合物的研究越来越受到人们的重视,有效地利用CO2,可减轻工业排放CO2对大气的污染。CO2加氢制甲醇因受平衡的限制,CO2转化率低,而CO2加氢制DME却打破了CO2加氢生成甲醇的热力学平衡限制。目前,世界上有不少国家正在开发CO2 加氢制DME的催化剂和工艺,但都处于探索阶段。日本Arokawa报道了在甲醇合成催化剂(CuO - ZnO - Al2O3)与固体酸组成的复合型催化剂上, CO2加氢制取甲醇和DME,在240 ℃,310 MPa的条件下, CO2转化率可达到25 %,DME选择性为55 %。大连化物所研制了一种新型催化剂,CO2 转化率为31.7 % ,DME选择性为50 %。天津大学化学工程系用甲醇合成催化剂Cu - Zn - Al2O3和HZSM-5制备了CO2加氢制DME 的催化剂。兰州化物所在Cu-Zn-ZrO2/ HZSM-5双功能催化剂上考察了CO2加氢制甲醇反应的热力学平衡。结果表明CO2加H2制DME不仅打破了CO2加氢制甲醇反应的热力学平衡,明显提高了CO2转化率,而且还抑制了水气逆转换反应的进行,提高了DME选择性。 1.3.5 催化蒸馏法制二甲醚 到目前为止, 只有上海石化公司研究院从事过这方面的研究工作。他们是以甲醇为原料, 用H2SO4 作催化剂, 通过催化蒸馏法合成二甲醚的。由于H2SO4具有强腐蚀性, 而且甲醇与水等同处于液相中, 因此, 该法的工业化前景一般。催化蒸馏工艺本身是一种比较先进的合成工艺, 如果改用固体催化剂, 则其优越性能得到较好的发挥。用催化蒸馏工艺可以开发两种DME生产技术:一种是甲醇脱水生产DME,一种是合成气一步法生产DME。从技术难度方面考虑, 第一种方法极易实现工业。 表1 DME液化气与液化石油气性质比较 项目 分子量 压力Mpa (60℃) 燃烧温度 ℃ 爆炸下限 % 理论空气量 预混气热值 KJ/ m3 LPG DME 56.6 46.07 1.92 1.35 2055 2250 1.7 3.45 11.32 6.96 3903 4219 表2 DME与0#柴油的比较 对比项目 DME 0#柴油 分子量 46.07 190~220 沸点(℃) -24.9 180~360 十六烷值 55~60 40~50 低热值(kJ/kg) 28840 42500 理论空燃比 9 14.6 氧含量(%) 34.8 — 硫化物 — 有 1.4 原料说明 原料名称:甲醇 分子式CH3OH,相对分子质量32.04。 本设计采用的甲醇原料浓度为90%(质量分数)。 (1)物理性质 甲醇是最简单的饱和脂肪醇,密度0.791g/cm3,沸点63.8℃,自燃点385℃,闪点20℃,蒸汽压96.3mmHg,常温常压下纯甲醇是无色透明,易挥发、可燃,略带醇香味的有毒液体。甲醇可以和水以及乙醇、乙醚等许多有机液体无限互容,但不能与脂肪烃类化合物相互溶,甲醇蒸汽和空气混合能形成爆炸性混合物,爆炸极限为6.0%-36.5%(体积)。 (2)化学性质 甲醇作为最简单的饱和脂肪醇因此具有脂肪醇的化学性质,即可进行氧化、酯化、羰基化、胺化、脱水等化学反应,在此只介绍几种重要的化学反应。 (1) 脱水反应 甲醇在浓硫酸或其它催化剂的催化作用下脱水生成二甲醚,是工业制备二甲醚的重要方法; 主反应: 2CH3OH→CH3O CH3+H2O+Q △H298=10.92KJ/mol 副反应:⑴ CH3OH→CO+2H2O ⑵ 2CH3OH→C2H4+2H2O ⑶ 2CH3OH→CH4+2 H2O +C ⑷ CH3OCH3→CH4+CO+ H2 ⑸ CO+H2O→CO2+ H2 (2) 氧化反应 甲醇在电解银催化剂下可被空气氧化成甲醛,是重要的工业制备甲醛的方法; (3) 酯化反应 甲醇可与多种无机酸和有机酸发生酯化反应,甲醇和硫酸发生酯化反应生成硫酸氢甲酯,硫酸氢甲酯经减压蒸馏生成甲基化试剂硫酸二甲酯; (4) 羰基化反应 甲醇和光气发生羰基化反应生成氯甲酸甲酯,进一步反应生成碳酸二甲酯; (5) 裂解反应 在铜催化剂上,甲醇可裂解生成CO和H2, 1.5二甲醚的性质 (1)化学性质 二甲醚在辐射或加热条件下会分解成甲烷、乙烷、甲醛、二氧化碳及一氧化碳(产物取决于反应条件及催化剂)。二甲醚可作为烷基化合剂,在很多场合中,它具有甲基化反应性能,例如在硅酸铝催化剂存在的条件下,二甲醚可以与苯发生烷基化反应而生成甲苯、二甲苯及多烷基苯。二甲醚与一氧化碳反应可生成乙酸或乙酸甲脂;与二氧化碳反应则生成甲氧基乙酸。当与氰化氢反应时则生成乙腈。此外,二甲醚可与三氟化硼形成络合物,其分子式(CH3)2OBF3,此络合物在空气中发烟,而在水或醇中则可分解。DME还可选择性氯化为各种氯化衍生物。无致癌性、腐蚀性甚微。 (2)物理性质 DME是具有挥发性醚味的无色气体,有令人愉快的气味,燃烧时的火焰略带光亮。在常温,常压下为气态,在压力储罐内为液体。 表5 DME的主要物理化学性质 分子式 CH3OCH3 蒸汽压(20℃) 0.53MPa 摩尔质量 46.07 气体燃烧热 31.58Kj/kg 熔点 -141.5℃ 蒸发热(-24.8℃) 467.4kJ/kg 沸点 -24.9℃ 自燃温度 350℃ 临界温度 128.8℃ 爆炸极限(空气中) 3.45~26.7VOL% 临界压力 5370Pa 在汽油中的溶解度 64%(-40℃) 对水的相对密度 0.66 对空气的相对密度 1.62 液体密度(20℃) 0.661kg/L 闪点 -41.4℃ 蒸汽密度(10℃ 1atm) 1.92kg/m3 (3)DME的毒性 DME的毒性很低,气体有刺激及麻醉作用的特性,通过吸入或皮肤吸收过量的此物品,会引起麻醉,失去知觉和呼吸器官损伤。 小鼠吸入 225.72g/ m3 麻醉浓度 猫 吸入 1658.85g/ m3 深度麻醉 人 吸入   154.24g/ m3×30min 轻度麻醉 人 吸入 940.50g/ m3 有极不愉快的感觉、有窒息感 1.6 二甲醚的主要技术指标 1.6.1技术要求 高纯度二甲醚的生产以甲醇为主要原材料,经过催化转化制成燃料级二甲醚,再经精馏分离后制得高纯度二甲醚气体产品。其中含有微量杂质如N2、CH4、CO2、C2H4、C3H6、及少量H2O、CH3OH等组分。本标准采用气相色谱法,选用GDX-502和25%PEG-1500/PoropakQ柱,使用程序升温,得到良好的分离效果。 类别:二甲醚气体产品按有效组份含量的不同划分为:A类---燃料级DME产品;B1类---溶剂、原料级DME产品;B2类—制冷剂、推进剂级DME产品(表1-8)。 表6 A级、B1级、B2级二甲醚气体产品符合下表规定的技术要求 项目 指 标 A级 B1级 B2级 感观 二甲醚含量m/m %≥ 水份m/m 10-6 ≤ 甲醇m/m 10-6 ≤ 其它杂质m/m %≤ 无色、无异味,常温下为压缩液体,略呈醇香 95 2000000 2000000 1.0 99.5 200 100 0.4997 99.9 100 50 0.09985 1.6.2试验方法 (1)抽样:Q/OCLX002-2000,抽样以一罐装容器为一批(或以一中间计量贮藏罐为一批) 抽样方法 将钢瓶取样器称重,打开采样阀门,冲洗管线及接头,立即将取样器的截止阀与采样点紧密连接,依次打开采样点的阀门,取样器截止阀和球阀,让试样冲洗取样器,30秒后依次关闭取样球阀,截止阀和采样点阀门,从连接管线上取下钢瓶,采样工作结束。 称量装满试样的钢瓶,计算出试样的重量,要求把试样内的20%排掉,重量不足时应重新取样。 (2)二甲醚含量、水分、甲醇的测定。 试剂与材料: 1、Porapak Q(50~80目)有机担体(进口) 2、聚乙二醇(PEG)-1500色谱固定液 3、GDX-502(60~80目)色谱担体 4、氢气载气 纯度≥99.99% 5、丙酮 分析纯 6、无水甲醇 分析纯 7、无水乙醇 分析纯 8、标准气:N2、CH4、CO2、C2H4、C3H6(由西南化工研究院提供) 9、H2O、CH3OH标准样制备 准确称取无水乙醇m1约4.9g(称准至0.0002g)、蒸馏水m2约0.001g(称准至0.0002g),无水甲醇m3约0.001g(称准至0.0002g)于干净玻璃瓶中摇匀备用。 装置: 1、气相色谱仪(带热导池检测器,气体进样器及色谱数据处理机) 2、微量注射器:5ml 3、钢瓶取样器:可用25mm内径的不锈钢管与截止阀,球阀焊制而成 4、色谱柱 用25%PEG-1500涂于Porapak Q+GDX-502=1+1装填在Ф3mm,长4m的不锈钢钢柱中,要求紧密均匀。并在色谱内90℃条件下老化4小时(注意老化期间要接入检测器)。 试样和试样的制备:按上述抽样方法准备好试样 程序: 先把气相色谱仪按下列条件调试好 载 气:氢气 流 速:37ml/min 柱 前 压:90~kpa 柱初温:63℃ 汽化温度:120℃ 柱终温:100℃ 检测温度:120℃ 桥 流:160mA 进 样 量:2.5ul 1、待仪器稳定后,在柱温63℃时,进标准气体 以峰面积标准曲线法测定以下各组份的校正因子,并得各组份的保留时间(min): N2:1.005 CH4:1.192 CO2 C2H4:2.238 C2H6:2.517 C3H6:7.247 2、待仪器柱温升至100℃并稳定后,以微量注射器注入H2O、CH3OH的标准样1μ1,得水的峰面积A1,甲醇峰面积A2,保留时间为(min):H2O:11.12, CH3OH:14.62 在相同条件下,注入标准样同体积的无水乙醇得水的峰面积A3,甲醇的峰面积A4 Q/OCLX002-2000 A水=A1-A3 A甲醇=A2-A4 H2O、CH3OH的标准样由质量百分比浓度换算为摩尔百分浓度。 按下式进行计算: 式中:m1- H2O、CH3OH标准样中无水乙醇的质量,g; m2- H2O、CH3OH标准样中蒸馏水的质量,g; m3-H2O、CH3OH标准样中无水甲醇的质量,g; 46—乙醇的分子量;18—水的分子量;32—甲醇的分子量。 1μlH2O、CH3OH标准样汽化后标准体积 校正因子按下式计算: 式中f水-水的校正因子;f甲醇--甲醇的校正因子, V0-lml标准样汽化后的标准体积 V1-试样的进样量ml;V2- H2O、CH3OH标准样的进样量ml。 A水—标准样中水的面积;A甲醇-标准样中甲醇的面积。 C、二甲醚含量的测定 ①、在a条相同条件下,以绝对标准曲线法使用色谱数据 Q/OCLX002-2000 处理机得到N2、CH4、CO2、C2H4、C2H6、C3H6组份的体积百分含量(%) ②、在b条相同条件下,以绝对标准曲线法使用色谱数据处理机得到H2O、CH3OH组份的体积极百分含量(%) ③、二甲醚体积百分(VDME)含量按下式计算: VDME(%)=100%-(N2%+CH4%+CO2%+C2H4%+C2H6%+C3H6%+H2O%+CH3OH%) ④、把体积百分含量换算成质量百分含量 X(%)=N2%×28+ CH4%×16+ CO2%×44+ C2H4%×28+ C2H6%×30+ C3H6%×42+ H2O %×18+ CH3OH %×32+DME%×46 ⑤、二甲醚(WDME)质量百分含量按下式计算: WDME(%)=(VDME%×46)/X% 水(W H2O)质量百分含量按下式计算: M H2O(%)=(V H2O %×18)/X% 甲醇(W CH3OH)质量百分含量按下式计算: M CH3OH(%)=(V CH3OH %×32)/X% 2 技术分析 2.1 反应原理 反应方程式: 2.2 反应条件 本过程采用连续操作,反应条件:温度T=250℃-370℃,反应压力,反应在绝热条件下进行。 2.3 反应选择性和转化率 选择性:该反应为催化脱水。在 400℃以下时,该反应过程为单一、不可逆、无副产品的反应,选择性为100%。 转化率:反应为气相反应,甲醇的转化率在80% 。 2.4 催化剂的选择 本设计采用催化剂γ-AL2O3,催化剂为球形颗粒,直径dp为5mm,床层空隙率ε为0.48。 3反应技术 3.1 物料衡算 将原料及产品规格换算成摩尔分率,即 原料:甲醇含量≥99.11%,水含量≤0.89% 产品:DME≥99.87%,甲醇含量≤0.004%,水含量≤0.126% 要求年产40万吨二甲醚,则每小时应生产二甲醚的量为: 又因产品二甲醚回收率为99.8%,则 则反应器生成二甲醚量为:Fx=1087.719kmo/h 反应器应加入甲醇量为: 甲醇原料进料量: 按化学计量关系计算反应器出口气体中各组分量 甲醇 水含量 计算结果列表如下 表3.1 物料衡算表 组分 进料 F0/(koml/h) 进料 qm0/(kg/h) 出料 F/(koml/h) 出料 qm/(kg/h) 二甲醚 0 0 1087.719 50035.074 甲醇 2743.717 87798.944 568.279 18184.928 水 24.419 439.542 1112.138 20018.484 合计 2768.136 88238.486 2768.136 88238.486 3.2 计算催化剂床层体积 进入反应器的气体总量Ft0=2730.462koml/h,给定空速Sv=5000h-1,所以,催化剂床层体积VR为: 3.3 反应器管数 反应器管数n拟采用管径为Ф27×2.5mm,故管内径d=0.022mm,管长6m,催化剂充填高度L为5.7m,所以: 采用正三角形排列,实际管数取5750根 4、 DME产品方案及生产规模 4.1 产品品种、规格、质量指标及拟建规模 产品品种: 二甲醚 拟建规模: 4万吨/年 年操作日: 365天 4.2 产品规格、质量指标 气雾级(工业级)二甲醚、燃料级二甲醚 (1)气雾级二甲醚质量标准(企业标准) 由于目前国内尚无气雾级二甲醚产品的国标,参照国内行业的技术标准,气雾级二甲醚产品应符合下述质量标准(企业标准) 项目 期望值 二甲醚wt%≥ 99.9 甲醇wt% ≤ 0.01 水份wt%≤ 0.002 (2)燃料级二甲醚质量标准(企业标准) 对燃料级二甲醚产品,目前也没有相应的国标,参照国内行业的技术标准,燃料级二甲醚产品应符合下述质量标准(企业标准) 项目 期望值 二甲醚wt%≥ 93 甲醇Wt% ≤ 3 水份wt%≤ 1 4.3 产品方案分析及生产规模分析 二甲醚是一种用途广泛的化工产品,主要用作冷冻剂、溶剂、萃取剂、气雾剂和燃料等。 二甲醚还能代替柴油作汽车燃料,又可作为民用燃料。二甲醚的用途和消费量正在不断扩大,其产品有着良好的市场和发展前景。 对于二甲醚而言,基本不存在市场需求问题,关键在于成本的控制。如果以二甲醚的热值和目前广泛使用的液化石油气相比较,二甲醚的成本不能超过3000元。 由于二甲醚用耐压罐车或装入钢瓶后运输很安全便捷,因此从成本上考虑,生产企业应该选择在富产煤炭或天然气的地区(甲醇两步法生产则可考虑少些),年产规模至少要在万吨以上,并且尽可能在工艺上实现多联产。 天然气和煤炭是规模化生产二甲醚较为经济的原料。本设计可以充分利用湖南及周围省份的便利资源并以甲醇为原料发展市场前景广阔的清洁燃料级二甲醚,对发展地区经济及解决能源问题注重环保方面都有着重要的作用且前景广阔。根据湖南、湖北、江西、广东等地区的消费情况,以及二甲醚技术的研发情况,当前二甲醚作为资源尚处于推广应用阶段,设计定为4万吨/年,随着市场的进一步培育和开拓,届时可再建更大规模的二甲醚装置。 5、 工艺流程介绍 5.1生产方法简述 二甲醚的生产方法主要有一步法和二步法两种。 一步法以合成气(CO+H2)为原料,在甲醇合成以及甲醇脱水的复合催化剂上直接合成二甲醚,再提纯得到二甲醚产品。 二步法是以合成气制得甲醇,然后甲醇在固体催化剂作用下脱水制得二甲醚,所用催化剂选择性高,特别适用于高纯度二甲醚生产。 (一)甲醇脱水制二甲醚 二甲醚可由甲醇脱水制得。此工艺在山东临沂新建的30000吨/年二甲醚生产装置上采用。最早采用的脱水剂是浓硫酸,反应在液相中进行。将甲醇和硫酸的混合物加热可得: CO+2H2=CH3OH <100℃时, CH3OH十H2SO4=CH3HSO4+H2O <100℃时, CH3HSO4+CH3OH=CH3OCH3+ H2SO4 该过程具有反应温度低、转化率高(>80%)、选择性好(99%)等优点,但也存在设备腐蚀严重、釜残液及废水污染环境、催化剂毒性大、操作条件恶劣等缺点,选择该工艺可能性较小。 1965年,美国Mobil公司与意大利ESSO公司都曾利用结晶硅酸盐催化剂进行气相脱水制备DME,其中Mobil公司使用了硅酸铝比较高的ZSM一5型分子筛,而ESSO公司则使用了0.5一1.5nm的含金属的硅酸铝催化剂,其甲醇转化率为70%,DME选择性>90%。1981年,Mobil公司利用HZSM一5使甲醇脱水制备二甲醚,并申请了专利,反应条件比较温和,常压、200℃左右即可获得80%甲醇转化率和>98%DME选择性。1991年,日本三井东亚化学公司开发了一种新的甲醇脱水制DME催化剂。据称该催化剂是一种具有特殊表面积和孔体积的γ一A12O3,可长期保持活性,使用寿命达半年之久,转化率可达74.2%,选择性约99%。我国化工部西南化工研究院也曾进行过甲醇脱水制二甲醚的研究,考察了13x分子筛、氧化铝及ZSM一5催化剂的性能,当采用ZSM一5在200℃时,甲醇的转化率可达75%一85%,选择性大于98%。扩大试验于1992年3月通过鉴定。上海吴径化工厂以高硅铝比的硅酸盐粉状结晶作催化剂,在低温(130一200℃)、常压下实现了甲醇制D卜任的新工艺。在小试1000h工作的基础上进行了单管试验。甲醇单程转化率可达85%,选择性几乎100%,使用周期大于1000h。适当调整温度后,用粗甲醇(平均含量为78.4%)同样可获得80%的转化率。可见甲醇脱水制DME技术己经成熟,具备工业化的条件,可作为DME的生产方法。 (二) 合成气直接合成二甲醚 传统的DME生产方法,一直采用两个截然不同的步骤。即甲醇的合成与甲醇脱水。为了开发操作简单、成本低而又可连续生产DME的新方法,人们曾用合成气直接制取二甲醚。 主要反应构成如下: 4H2+2CO=2CH3OH 2CH3OH= CH3OCH3+ H2O CO+ H2O=CO2+H2 3 H2+3CO = CH3OCH3+ CO2 该工艺实质上是把合成甲醇及甲醇脱水同步反应合并在一个反应器内,其关键是选择高活性及高选择性的双功能催化剂。一步法又分为二相法和三相法。国外自80年代后对此研究较多,较为典型的是丹麦托普索公司TIGAS工艺、日本三菱重工和COSMO石油公司联合开发的AMSTG工艺;国内大连化物所、华东理工大学、清华大学、山西煤化所等均在研究一步法生产工艺。目前国外己开发成功的有二种方法: (l)托普索公司的固定床气相反应法,在反应器之间用冷却器取热,催化剂在高温下有高稳定性和高选择性; (2)美国空气和化学品公司的液相淤浆床反应器(气、固、液三相合成)方法,有中试(10吨/天)及工业化示范装置(240吨/天);日本NKK公司的淤浆床反应器方法,于1999年建成一套5吨/天的中试装置。 国内山西煤化所开发的是三相浆态床一步法合成技术,已进行中试(规模100吨/年),于2001年8、9月份完成中试。大连化物所开发的是二相固定床一步合成二甲醚工艺(采用管壳反应器),已完成60吨/年的中试,并已在湖北田力实业公司建有1500吨/年的示范装置(具体运行情况尚需了解)。华东理工大学进行的是气、固、液三相一步法合成工艺研究,已完成小试,未进行中试,现希望与有关单位合作进行中试研究。清华大学进行的是三相淤浆床一步法合成反应器的研究,己完成小试,正筹备中试。南京大学主要研究二甲醚的反应机理,产品主要应用于冶金工业的添加剂、抗氧剂等。 据日本报道,采用Cu/Zn/Al催化剂,从合成气直接制取二甲醚,初始转化率和1000h后的转化率分别为65%和61%。中国科学院山西煤炭化学研究所的陶家林等对合成气制二甲醚的催化剂及反应条件进行了研究,用自制的双功能催化剂在275℃、2Mpa、1500mL/(g·h)、H2/CO=2、CO2=l%一2%的条件下,合成气中CO转化率可达75%,DME选择性>84%。兰州化物所的黄友梅等对合成气制二甲醚的催化剂及反应的活性位进行了研究。用自制的铜基双功能催化剂在一定的反应条件下,合成气中CO转化率可达90%,DME在有机产物中的选择性>95%。该催化剂的制备已申请专利(申请号:95121619.8)。中国科学院大连化物所、清华大学等对此也进行了一定的研究,前者制备了CO转化率达到90%,DME在有机产物中选择性大于90%催化剂,后者就制备方法及反应条件进行了研究。此外,美国的空气产品公司和化学品公司完成了一项由合成气直接合成二甲醚的新技术,采用淤浆反应器,使水气变换、甲醇合成与甲醇脱水三个可逆、放热反应协同进行,避免了多步合成法中所受平衡条件的影响,使得单程转化率提高。另外,用惰性浆液的返混流动,吸收化学反应产生的热量,保护对热敏感的催化剂,使反应更快更有效地进行。操作压力为3.5-6.3MPa、温度为
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传
相似文档                                   自信AI助手自信AI助手

当前位置:首页 > 学术论文 > 毕业论文/毕业设计

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服