资源描述
控制系统的MATLAB仿真与设计课后答案
22
2020年4月19日
文档仅供参考,不当之处,请联系改正。
第二章
1>>x=[15 22 33 94 85 77 60]
>>x(6)
>>x([1 3 5])
>>x(4:end)
>>x(find(x>70))
2>>T=[1 -2 3 -4 2 -3] ;
>>n=length(T);
>>TT=T';
>>for k=n-1:-1:0
>>B(:,n-k)=TT.^k;
>>end
>>B
>>test=vander(T)
3>>A=zeros(2,5);
>>A(:)=-4:5
>>L=abs(A)>3
>>islogical(L)
>>X=A(L)
4>>A=[4,15,-45,10,6;56,0,17,-45,0]
>>find(A>=10&A<=20)
5>>p1=conv([1,0,2],conv([1,4],[1,1]));
>>p2=[1 0 1 1];
>>[q,r]=deconv(p1,p2);
>>cq='商多项式为 '; cr='余多项式为 ';
>>disp([cq,poly2str(q,'s')]),disp([cr,poly2str(r,'s')])
6>>A=[11 12 13;14 15 16;17 18 19];
>>PA=poly(A)
>>PPA=poly2str(PA,'s')
第三章
1>>n=(-10:10)';
>>y=abs(n);
>>plot(n,y,'r.','MarkerSize',20)
>>axis equal
>>grid on
>>xlabel('n')
2>>x=0:pi/100:2*pi;
>>y=2*exp(-0.5*x).*sin(2*pi*x);
>>plot(x,y),grid on;
3>>t=0:pi/50:2*pi;
>>x=8*cos(t);
>>y=4*sqrt(2)*sin(t);
>>z=-4*sqrt(2)*sin(t);
>>plot3(x,y,z,'p');
>>title('Line in 3-D Space');
>>text(0,0,0,'origin');
>>xlabel('X'),ylable('Y'),zlable('Z');grid;
4>>theta=0:0.01:2*pi;
>>rho=sin(2*theta).*cos(2*theta);
>>polar(theta,rho,'k');
5>>[x,y,z]=sphere(20);
>>z1=z;
>>z1(:,1:4)=NaN;
>>c1=ones(size(z1));
>>surf(3*x,3*y,3*z1,c1);
>>hold on
>>z2=z;
>>c2=2*ones(size(z2));
>>c2(:,1:4)=3*ones(size(c2(:,1:4)));
>>surf(1.5*x,1.5*y,1.5*z2,c2);
>>colormap([0,1,0;0.5,0,0;1,0,0]);
>>grid on
>>hold off
第四章
1>>for m=100:999
m1=fix(m/100);
m2=rem(fix(m/10),10);
m3=rem(m,10);
if m==m1*m1*m1+m2*m2*m2+m3*m3*m3
disp(m)
end
end
2 M文件:
function[s,p]=fcircle(r)
s=pi*r*r;
p=2*pi*r;
主程序:
[s,p]=fcircle(10)
3>>y=0;n=100;
for i=1:n
y=y+1/i/i;
end
>>y
4 M文件:
function f=factor(n)
if n<=1
f=1;
else
f=factor(n-1)*n;
end
主程序:
>>s=0;
for i=1:5
s=s+factor(i);
end
>>s
5>>sum=0;i=1;
while sum<
sum=sum+i;
i=i+1;
end;
>>n=i-2
6 for循环M文件:
function k=jcsum(n)
k=0;
for i=0:n
k=k+2^i;
end
主程序:
>>jcsum(63)
While循环M文件:
function k=jcsum1(n)
k=0;i=0;
while i<=n
k=k+2^i;
i=i+1;
end
主程序:
>>jcsum1(63)
第五章
1>>A=[2,1,-5,1;1,-5,0,7;0,2,1,-1;1,6,-1,-4];
>>b=[13,-9,6,0]';
>>x=A\b
2 M文件:
function f=fxyz(u)
x=u(1);y=u(2);z=u(3);
f=x+y.^2./x/4+z.^2./y+2./z;
主程序:
[U,fmin]=fminsearch('fxyz',[0.5,0.5,0.5])
3>>X=linspace(0,2*pi,50);
>>Y=sin(X);
>>P=polyfit(X,Y,3)
>>AX=linspace(0,2*pi,50);
>>Y=sin(X);
>>Y1=polyval(P,X)
>>plot(X,Y,':O',X,Y1,'-*')
4>>x=0:2.5:10;
>>h=[0:30:60]';
>>T=[95,14,0,0,0;88,48,32,12,6;67,64,54,48,41];
>>xi=[0:0.5:10];
>>hi=[0:10:60]';
>>temps=interp2(x,h,T,xi,hi,'cubic');
>>mesh(xi,hi,temps);
第六章
1>>syms x
>>y=finverse(1/tan(x))
2>>syms x y
>>f=1/(1+x^2); g=sin(y);
>>fg=compose(f,g)
3>>syms x
>>g=(exp(x)+x*sin(x))^(1/2);
>>dg=diff(g)
4>>F=int(int('x*exp(-x*y)','x'),'y')
5>>syms x
>>F=ztrans(x*exp(-x*10))
6>>a=[0 1;-2 -3];
>>syms s
>>inv(s*eye(2)-a);
7>>f=solve('a*x^2+b*x+c')
8>>f=solve('x+y+z=1','x-y+z=2','2*x-y-z=1')
9>>y=dsolve('D2y+2*Dy+2*y=0','y(0)=1','Dy(0)=0')
>>ezplot(y),grid on
10>>a=maple('simplify(sin(x)^2+cos(x)^2);')
11>>f=maple('laplace(exp(-3*t)*sin(t),t,s);')
12>>syms t x
>>F=sin(x*t+2*t);
>>L=laplace(F)
第七章
1
2
3
4
5
6
7
第八章
1-1>>h=tf([5,0],[1,2,2])
1-2>>s = tf('s');
>>H = [5/(s^2+2*s+2) ];
>>H.inputdelay =2
1-3>>h=tf([0.5,0],[1,-0.5,0.5],0.1)
2>>num=2*[1,0.5];den=[1,0.2,1.01];
>>sys=tf(num,den)
>>[z,p,k]=tf2zp(num,den);
>>zpk(z,p,k)
>>[A,B,C,D]=tf2ss(num,den);
>>ss(A,B,C,D)
3 >>num=[1,5]; den=[1,6,5,1]; ts=0.1;
>>sysc=tf(num,den);
>>sysd=c2d(sysc,ts,'tustin')
4
>>r1=1;r2=2;c1=3;c2=4;
>>[A,B,C,D]=linmod('x84');
>>[num,den]=ss2tf(A,B,C,D);
>>sys=tf(num,den)
5>>A=[1,1,0;0,1,0;0,0,2];B=[0,0;1,0;0,-2];
>>n=size(A)
>>Tc=ctrb(A,B);
if n==rank(Tc)
disp('系统完全能控');
else
disp('系统不完全能控');
end
第九章
1>>num=[2,5,1];den=[1,2,3];
>>bode(num,den);grid on ;
>>figure;
>>nyquist(num,den);
2>>num=5*[1,5,6];den=[1,6,10,8];
>>step(num,den);grid on ;
>>figure;
>>impulse(num,den);grid on ;
3>>kosi=0.7;wn=6;
>>num=wn^2;den=[1,2*kosi*wn,wn^2];
>>step(num,den);grid on ;
>>figure;
>>impulse(num,den);grid on ;
4 M文件:
function [rtab,info]=routh(den)
info=[];
vec1=den(1:2:length(den)); nrT=length(vec1);
vec2=den(2:2:length(den)-1);
rtab=[vec1; vec2, zeros(1,nrT-length(vec2))];
for k=1:length(den)-2,
alpha(k)=vec1(1)/vec2(1);
for i=1:length(vec2),
a3(i)=rtab(k,i+1)-alpha(k)*rtab(k+1,i+1);
end
if sum(abs(a3))==0
a3=polyder(vec2);
info=[info,'All elements in row ',...
int2str(k+2) ' are zeros;'];
elseif abs(a3(1))<eps
a3(1)=1e-6;
info=[info,'Replaced first element;'];
end
rtab=[rtab; a3, zeros(1,nrT-length(a3))];
vec1=vec2; vec2=a3;
end
主程序:
>>den=[1,2,8,12,20,16,16];
>>[rtab,info]=routh(den)
>>a=rtab(:,1)
if all(a>0)
disp('系统是稳定的');
else
disp('系统是不稳定的');
end
5>>num=7*[1,5];den=conv([1,0,0],conv([1,10],[1,1]));
>>[gm,pm,wg,wc]=margin(num,den)
第十章
1 M文件:
function varargout=rg_lead(ng0,dg0,s1)
if nargout==1
ngv=polyval(ng0,s1);
dgv=polyval(dg0,s1);
g=ngv/dgv;
thetal=pi-angle(g);
zc=real(s1)-imag(s1)/tan(thetal);
t=-1/zc;
varargout{1}=[t,1];
elseif nargout==2
ngv=polyval(ng0,s1); dgv=polyval(dg0,s1);
g=ngv/dgv; theta=angle(g); phi=angle(s1);
if theta>0
phi_c=pi-theta;
end
if theta<0;
phi_c=-theta
end
theta_z=(phi+phi_c)/2; theta_p=(phi-phi_c)/2;
z_c=real(s1)-imag(s1)/tan(theta_z);
p_c=real(s1)-imag(s1)/tan(theta_p);
nk=[1 -z_c]; varargout{2}=[1 -p_c]; kc=abs(p_c/z_c);
if theta<0
kc=-kc
end
varargout{1}=kc*nk;
else
error('输出变量数目不正确!');
end
主程序:
>> ng0=[1]; dg0=10000*[1 0 -1.1772];
>>g0=tf(ng0,dg0); %满足开环增益的为校正系统的传递函数
>>s=kw2s(0.7,0.5) %期望的闭环主导极点
>>ngc=rg_lead(ng0,dg0,s);
>>gc=tf(ngc,1)
>>g0c=tf(g0*gc);
>>rlocus(g0,g0c);
>>b1=feedback(g0,1); %未校正系统的闭环传递函数
>>b2=feedback(g0c,1); %校正后系统的闭环传递函数
>>figure,step(b1,'r--',b2,'b'); grid on %绘
2 M文件:
function [ngc,dgc,k]=rg_lag(ng0,dg0,KK,s1,a)
ngv=polyval(ng0,s1);dgv=polyval(dg0,s1);
g=dgv/ngv;
k=abs(g); %期望主导极点处的根轨迹增益
beta=k/KK;
[kosi1,wn1]=s2kw(s1);
zc=-wn1*sin(a*pi/180)/sin(pi-atan(sqrt(1-kosi1^2)/kosi1)-(a*pi/180)); %利用正弦定理
pc=beta*zc;
ngc=beta*[1,-zc];dgc=[1,-pc];
主程序:
>>KK=20;s1=-2+i*sqrt(6);a=1
>>ng0=[10];dg0=conv([1,0],[1,4]);
>>g0=tf(ng0,dg0);
>>[ngc,dgc,k]=rg_lag(ng0,dg0,KK,s1,a);
>>gc=tf(ngc,dgc)
>>g0c=tf(KK*g0*gc);
>>b1=feedback(k*g0,1);
>>b2=feedback(g0c,1);
>>step(b1,'r--',b2,'b');grid on
3 M文件:
function [ngc,dgc,k]=rg_lag(ng0,dg0,KK,s1,a)
ngv=polyval(ng0,s1);dgv=polyval(dg0,s1);
g=dgv/ngv;
k=abs(g); %期望主导极点处的根轨迹增益
beta=k/KK;
[kosi1,wn1]=s2kw(s1);
zc=-wn1*sin(a*pi/180)/sin(pi-atan(sqrt(1-kosi1^2)/kosi1)-(a*pi/180)); %利用正弦定理
pc=beta*zc;
ngc=beta*[1,-zc];dgc=[1,-pc];
主程序:
>>KK=128;s1=-2+i*2*sqrt(3);a=2
>>ng0=[10];dg0=conv([1,0],conv([1,2],[1,8]));
>>g0=tf(ng0,dg0);
>>[ngc,dgc,k]=rg_lag(ng0,dg0,KK,s1,a);
>>gc=tf(ngc,dgc)
>>g0c=tf(KK*g0*gc);
>>rlocus(g0,g0c);
>>b1=feedback(k*g0,1);
>>b2=feedback(g0c,1);
>>figure,step(b1,'r--',b2,'b');grid on
4 M文件:
function [ngc,dgc]=lead4(ng0,dg0,KK,Pm,w)
[mu,pu]=bode(KK*ng0,dg0,w); [gm,pm,wcg,wcp]=margin(mu,pu,w);
alf=ceil(Pm-pm+5); phi=(alf)*pi/180;
a=(1+sin(phi))/(1-sin(phi)), dbmu=20*log10(mu);mm=-10*log10(a);
wgc=spline(dbmu,w,mm), T=1/(wgc*sqrt(a)),
ngc=[a*T,1]; dgc=[T,1];
主程序:
>>ng0=[1];dg0=conv([1,0,0],[1,5]);
>>g0=tf(ng0,dg0);
>>w=logspace(-3,3);
>>KK=1;Pm=50;
>>[ngc,dgc]=lead4(ng0,dg0,KK,Pm,w);
>>gc=tf(ngc,dgc);g0c=tf(KK*g0*gc);
>>bode(KK*g0,w);hold on,bode(g0c,w);grid on,hold off
>>[gm,pm,wcg,wcp]=margin(g0c)
>>Kg=20*log10(gm)
>>g1=feedback(g0c,1);
>>bode(g1),grid on,
>>[mag,phase,w]=bode(g1);
>>a=find(mag<=0.707*mag(1));
>>wb=w(a(1))
>>max(mag)
>>b=find(mag==max(mag))
>>wr=w(b)
5 M文件:
function [ngc,dgc]=fg_lead_pm(ng0,dg0,Pm,w)
[mu,pu]=bode(ng0,dg0,w); %计算原系统的对数频率响应数据
[gm,pm,wcg,wcp]=margin(mu,pu,w); %求取原系统的相角裕度和剪切频率
alf=ceil(Pm-pm+5); %计算控制器提供的最大超前角度,
phi=(alf)*pi/180; %将最大超前角转换为弧度单位
a=(1+sin(phi))/(1-sin(phi)); %计算a值
dbmu=20*log10(mu); %系统的对数幅值
mm=-10*log10(a); %wm处的控制器对数幅值
wgc=spline(dbmu,w,mm); %差值求取wm,认为wm=wc
T=1/(wgc*sqrt(a)); %计算T
ngc=[a*T,1]; dgc=[T,1];
主程序:
>>KK=40; Pm=50;
>>ng0= KK *[1]; dg0=conv([1,0],conv([1,1],[1,4]));
>>g0=tf(ng0,dg0) ;
>>w=logspace(-2,4);
>>[ngc,dgc]=fg_lead_pm(ng0,dg0,Pm,w)
>>gc=tf(ngc,dgc),g0c=tf(g0*gc);
>>b1=feedback(g0,1); b2=feedback(g0c,1);
>>step(b1,'r--', b2,'b'); grid on
>>figure, bode(g0,'r--',g0c,'b',w), grid on,
>>[gm,pm,wcg,wcp]=margin(g0c), Km=20*log10(gm)
展开阅读全文