资源描述
应用于旋转变压器的非接触电能传输
摘要:这篇论文讨论了电力传输系统固定旋转装置的非接触能量传输。利用旋转变压器来替代电线和集滑环;灌形磁芯几何用于旋转变压器的不同绕组和拓扑结构的比较;变压器在电磁和热域的分析;一个分析模型的每个域是分开的。有效性的分析模型二维和三维数值的模拟和测量。原型旋转变压器的旋转速率1千瓦的峰值,旋转6000。原型制造使用的是罐形磁芯和测试的实验装置。
I、引言
在许多现代机电系统设计中,力到旋转部件的转移是十分重要的角色,例如,在机器人技术和工业应用中的电力需要传输到旋转变压器。如今,电线和滑环用于传递动力的转动部分。电线的缺点是限制旋转角度的单一性和限制增加刚度。尽管大量的研究和发展可靠耐用的滑环,接触磨损以及振动—信息限制的寿命,并经常需要维护。1。此外,接触磨损造成的尘埃粒子,这是不必要的无尘室和空应用。
一个克服电线和滑动环这些缺点的方法是采用旋转变压器非接触式能量传递系统。变压器转换电源在一个气隙,一个物理分离提供能够旋转变压器的二次侧。额外的优势可以自由在绕组的比例,改造主要电压等级的负载的要求
1970年代以来对该非接触能量通过一个旋转变压器传输进行调查 [ 2 ]。后来旋转变压器的概念应用于像经皮能量传输心脏起搏器[ 3 ]和[ 4 ]感应充电,这两种情况得益于大学英语。旋转变压器可用于转移电源和数据信号部分的同时运动,通过使用一个额外的电感或电容性接头[ 5 ]。
轴向旋转和罐芯变压器可以用于旋转变压器。双方进行了[ 6 ]中从总量与效率。锅核心几何,图1所示,提供更好的性能指标方面的磁通密度,磁耦合和损失。因此,这个拓扑会在这篇论文中进一步探讨。
图1、罐芯变压器图形
本文介绍了一个峰值功率为1千瓦的旋转变压器转移到负载的设计,以6000转/pm转动。电子器件上的负载需要输入直流电压为50伏,首先,几何的旋转变压器的分析。其次,来源于电磁和热性能的变压器模型分析。最后,原型变压器的设计和制造来证明模型分析。
II 能量转移拓扑
旋转变压器的工作原理可从法拉弟定律和安培环路定律获得。应有楞次定律并获得正玄激励,等效产生一个方程的感应电压超过n-turn绕组和表达的转移,独立的数量化
(1)
(2)
其中是施加电压的频率,是峰值磁通密度,形状的填充因子的绕组。横截面的内芯,,是最小的核心区域,S是可绕组,定义如图2。一顶视图和截面转动壶形铁芯变压器是图2a和图2b。相应的几何参数中列出的表1,这些表达式可用于确定核心几何和主要参数在开始设计一个旋转变压器。在每一个核心压痕可以发现,引导线该绕组的核心,创造了一个不完整的轴对称布局。影响的压痕的权力转移在旋转过程中的三维有限元研究模型[ 7 ]。图3a-d表明反应的中学电压变化的电阻负载不同相对位置的核心凹陷部分。在每一个图额外插入相同的反应曲线不同的角位置被发现。可以假定为一个轴对称几何进一步分析。
图2、壶形磁芯的几何顶视图(a)和截面(b)
图3、不同相对角的二次电压特性在核心的缩进位置
图4、同轴相邻绕组的拓扑结构(a)和(b)
表1、图2图4的几何参数
旋转变压器可以作为直流-直流电源转换器系统的一部分。在初级侧的旋转变压器,由一个半桥式转换器将一个直流电压转换为高频电压。从而降低了变压器的尺寸和最大的功率传输,如图所示(2)。在变压器的二次侧,高频电压经过整流,提供给负载。两种不同的拓扑结构放置在绕组旋转壶形铁芯变压器伤。第一部分是相邻的拓扑绕组的拓扑结构,这是显示在图4a,其中每个绕组放在一个单独的核心的一半。因此,一个侧变压器可以完全独立于对方,例如,放置在真空中。二拓扑是同轴绕组的拓扑结构,这是显示在图4b,在那里绕组放在每个其他。这种拓扑需要使用一个额外的绕组筒管,从而降低了有效绕组区。因为两个绕组绕每一个小缺口之间的振动,由于旋转容易损坏绕组。在本文中,两绕组的拓扑结构进行了比较和差异从磁和电角度的确定。
III 梗概
设计一个旋转变压器需要建模的电磁学和热学。
A、磁模型:一个轴对称磁场磁阻模型导出了计算电感变压器。磁通量路径,如图5所示,已确定由一个二维有限元模型和基于物理布局磁阻模型已经建立。该模型表明,图6,对于相邻绕组的拓扑。R代表磁阻、下标c,ag,lk分别代表核心、气隙、泄漏路径的磁通。
结合各一半的核心和间隙结果,磁阻网络如图6a,可改写为一等效电路,显示图6b。其中,励磁电感,、分别代表了漏电感的一次侧和二次侧。
1)磁化的磁化电感电感计算。
(3)
22
()
a
cce
oroi
z
RR
rr
mmp
==
-
V
(4)
()
2
o
n
i
cb
or
r
l
r
R
z
mmp
=
V
(5)
其中Ro和Ri分别是外部和内部核心半径的一部分, ∆z为核心部分的高度。由于本边缘磁通周围的气隙,一个额外的边缘磁通因子,,增加了计算气隙磁阻[ 8 ]
(6)
(7)
图5、相邻同轴绕组的拓扑结构通量线(a)和(b)
图6、磁阻的相邻的绕组拓扑建模的磁通路径(a)磁阻模型(b),(c)的等效电电路
2)漏电感:在旋转变压器各种漏磁通线,不能连接两个绕组。因为这些通量线没有一个先验已知路径,它是不准确的模型与磁阻网络等。不同的方法是计算漏电感储存的能量在绕组体积。磁场能量的漏磁通可以表达的.
(8)
这是平等的磁场能量的绕组体积[ 8 ]。表达的磁场力量可以发现由安培环路定律。在用相邻绕组的拓扑结构,磁场strengthcan表达的初级绕组函数theaxial长度
(9)
气隙中的磁场强度,可以定义假设一个统一的人造纤维。
(10)
在次级线圈,磁场强度可以表达同样的(9)。作为辅助绕组空间是走过,磁动势的线性下降到零,因为Np、i 、p =−Ns、i、s求解积分,(8),产量
(11)
其中是从总漏电感小学侧。类似的表达为漏电感可以衍生为同轴绕组的拓结构,其中磁场强度应表示为函数的半径。
3)验证:电感式的原型—形成了从二维有限元计算模拟和测量的原型变形金刚(第四节)。电感的相邻和同轴绕组的拓扑结构分别如图7,8所示。本数据显示通过增加气隙,磁化电感,从而也降低磁耦合。漏电感几乎不断的增加气隙取决于绕组的拓扑。较低的漏电感被发现在该同轴绕组拓扑,为几乎相同的绕组的磁通路径。
在本文中假定的气隙长度为0.5毫米。气隙长度为0.5毫米,最大误差5%的测量和分析计算电感。值得注意的是,旋转的内核与一个小的气隙之间,需要有一个准确的变压器的装配。
图7、相邻线圈旋转二次泄漏电感变压器的初级励磁电感(b)和初级漏感(c)
图8、同轴旋转二次绕组漏电感变压器的初级励磁电感(b)和(c)初级漏感(c)同轴旋转二次绕组漏感
B .电动模型:完成电气等效电路,绕组电阻,与谐振电容,,已添加到电路,如图9所示。
图9旋转变压器的电气等效电路
1)绕组电阻:半桥式变换器的旋转变压器电压时一个方形波形,这增加了谐波的交流损耗。一个解析表达式的电阻丝的情况非正弦波形,在道威尔定律的基础上推出了交流电阻公式。
2)谐振电容器:在变压器的两侧,谐振电容器已被添加到克服电压以降低漏电感,通过增加当地电压从而增加磁通量密度。共振电容器可以放置在一系列或平行的变压器绕组两端。
被放置在初级侧的一系列谐振电容作为隔直电容和创造零交叉谐振电压。这使得有可能使用零电流开关,减少开关损耗。将初级并联电容器会导致高电流的谐振回路由于高频率电压。这样将避免增加功率损失。
图10 磁耦合的主共振电容的磁耦合影响曲线
添加在次级侧谐振电容器提高了功率传输能力。图10显示了ofcp归一化值
为改变磁耦合串联和并联谐振的二次侧[ 10]。造成不敏感的初级侧的谐振电容器磁耦合的变化,例如造成振动旋转,在谐振电容器二次侧串联放置一系列次级绕组。频率的电路工作在共振频率可以计算通过
1
2
n
res
lkn
f
LC
p
=
(12)
此外,谐振电路的行为过滤器过滤高次谐波,从而,降低传导损失。
3)功率损失:传导和磁芯损耗的主要在旋转变压器的功率损耗。传导
损失,已通过公式(13)计算如下:
(13)
其中是初级电流有效值,其中包括了反映负荷电流和磁化电流。
核心损失由下列斯坦梅茨方程计算得到。
(14)
其中,,x和y是指定的材料常数和是磁芯的体积。
这两个磁芯和传导损耗取决于频率。增加频率下的恒功率转移,提高由于增加交流绕组电阻和降低铁芯损耗的传导损失,因较低的磁通量密度。对于一个特定的功率传输,最佳分辨率和磁场的磁通密度发现,造成最低限度的核心和传导损失。
C 热模型:磁芯和传导损失导致变压器温度上升。他是本设计变压器热研究的总要部分,因为相对磁导率的磁芯材料以及功率损耗,核心的温度依赖性。热模型允许估计平均绕组和铁心温度。
图11二维热等效模型得出的一个季度磁芯横面图
表二传热系数
表三 各区域的平均温度()
图12 (a)和(b)旋转变压器相邻同轴绕组拓扑结构
28
热等效电路,如图11所示,采用的是有限差分模拟技术,其中热阻抗的概念是推导传热[ 11 ]。其中热热模型所划分的上半部衍生几何分成六个区域,在那里从 I到V代表核心和区域VI表示变压器绕组。五各节点被定义为每个区域和传热节点模型的热电阻。传导的电阻用新型传热区域对流阻力模型用于传热该区域边界之间空气。假定在该模型的坐下边界没有热传递。每个区域的功率损失是由热源插在各个区域的中间节点形成的。
每个节点的平均温度是通过确定节点之间的热传递进行计算的,通过下式表达:
(15)
其中是一个矩阵,其中包括所有热电阻之间的节点,T是一个向量组成的各个节点温度,Q是与所有的热能流入一个向量变压器。热电阻是指使用传导和对流传热系数,给出了表二。
1)验证:为了验证热模型,建立一个二维有限元模型,以热假设。每个区域中心的最大温度见表三。最大误差分析和数值计算之间相对于环境温度为20◦增加了6.9%。
IV 变压器原型
为了验证分析模型,两个旋转变换—ERS已设计和制造。拍摄的原型如图12所示。变压器参数从序列二次规划算法MATLAB,并且此算法已经运用。该算法已被用来寻找反—前参数获取最小的损失。由于有限的芯数量是常用的功率转移1千瓦,罐芯P66\/ 56从半导体的铁氧体选择12。灌形磁芯组成的材料3c81,特别锰锌铁氧体的高功率的应用开发。锅中核心参数表中指定的表四、五优化后的变压器参数指定为绕组的拓扑结构。
表五优化变压器参数规格指定的两绕组拓扑结构。此表显示不同绕组之间的拓扑结构之间的差异。首先,变成了最大的两个绕组的拓扑结构降低频率以获得最小的功率损耗,更多的将适合在相邻的绕组的拓扑结构,表现出较高的这种拓扑结构的绕制效率。其次,较高的电感在相邻绕组拓扑减少磁化电流,和导通损耗。总的来说,虽然获得了较低的磁耦合,相邻绕组拓扑也是最低的功率损耗。
实验装置已创建组成的半桥式逆变器连接到一次侧的变压器和二极管整流器连接二次侧的整流器。固定功率为100w,由于受到半桥电路的限制。过电压2.5欧姆的等效载荷进行了测量和模拟在Matlab的Simulink。对于相邻的波形绕组的拓扑结构如图13所示,测量和模拟电压具有相同的振幅。波纹可以是发现的实测波形,一个额外的过滤器可以添加删除这些涟漪。50 Wis的权力转移测量不同的角速度,如图14所示。无显着差异的权力转移是注意越来越多的角速度。
表4 锅的核心参数
表5原型变压器参数
图13 测量和模拟(a)负载电压和负载电流(B)相邻的线圈结构
图14 对于不同的角速度的功率传输
V 结论
本文提出了一种旋转变压器滑动环和电线从电源转移置换固定装置的旋转部分。电磁和热模型分析,导出了与7%的最大误差与测量有限元模拟,两个最小的原型变压器损失是制造和一个固定的电源变压器获得了100 W的和不影响旋转被发现的功率传输。相邻的同轴绕组的拓扑结构内旋转壶芯变压器与最小的功率损耗的比较。得出相邻的绕组拓扑采用绕线区有效从而降低了频率和磁化电流获得更低的功率损耗比同轴绕组的拓扑结构。
参考文献
[1] K. Papastergiou and D. Macpherson, “Contact-less transfer of energyby means of a rotating transformer,” Proc. ISIE, pp. 1735–1740, June 2005.
[2] E. Landsman, “Rotary transformer design,”Power conditioning special-ists conference record, pp. 139–152, 1970.
[3] A. Ghahary and B. Cho, “Design of transcutaneous energy transmission system using a series resonant converter,” IEEE Transactions on Power Electronics, vol. 7, no. 2, pp. 261–269, 1992.
[4] H. Abe, H.Sakamoto, and K. Harada, “A noncontact charger using a resonant converter with parallel capacitor of the secondary coil,” IEEETransactions on Industry Applications, vol. 36, no. 2, pp. 444–451, 2000.
[5] A. Esser and A. Nagel, “Contactless high speed signal transmissionintegrated in a compact rotatable power transformer,” European Power Electronics Association, pp. 409–414, 1993.
[6] J. Legranger, G. Friedich, S. Vivier, and J. Mipo, “Comparison of two optimal rotary transformer designs for highly constrained applications,”Electrical Machines & Drive Conference, vol. 2, pp. 1546–1551, May 2007.
[7] , FLUX 10 User’s Guide. Cedrat, 2009.
[8] F. van Horck,A Treatise on Magnetics and Power Electronics. Technical University Eindhoven, 2006.
[9] W. Hurley, E. Gath, and J. Breslin, “Optimizing the ac resistance ofmultilayer transformer windings with arbitrary current waveforms,” IEEE Transactions on Power Electronics, vol. 15, no. 2, pp. 369–376,2000.
[10] A. Moradewicz, “Contactless energy transmission system with rotatable transformer - modeling, analyze and design,” Ph.D. dissertation, Elec-trotechnical Institute, Warsaw, Poland, 2008.
[11] J. Holman, Heat Transfer. McGraw-Hill Book Company, 1986.
[12] Ferroxcube,Data Handbook Soft Ferrites and Accessories. Ferroxcube,November 2008.
Contactless Power Transfer to a Rotating Disk
J.P.C. Smeets, D.C.J. Krop, J.W. Jansen and E.A. Lomonova Electromechanics and Power Electronics Group, Eindhoven University of Technology, Netherlands Email: j.p.c.smeets@tue.nl
Abstract—This paper discusses a power transfer system from the stationary to the rotating part of a device, by means of contactless energy transfer. A rotating transformer is proposed as a replacement for wires and slip rings. A pot core geometry is used for the rotating transformer and two different winding topologies are compared. The transformer is analyzed in the electromagnetic and thermal domain. An analytic model for each domain is derived. The validity of the analytical models is confirmed with both 2D and 3D FEM simulations and mea-surements. Two prototype rotating transformers are designed for the transfer of 1 kW peak, rotating at 6000 rpm. The prototypes are manufactured using commercially available pot cores and tested in an experimental setup.
I. INTRODUCTION
In many modern mechatronic systems, the transfer of power to rotating parts plays an important role, for example, in robotics and in industrial applications where power needs to be transferred to a rotating part. Nowadays, wires and slip rings are used to transfer power to the rotating part. Disadvantages of wires are a limited rotation angle and increased stiffness Despite the significant amount of research and development of reliable and durable slip rings, contact wear as well as vibra-tion limit the lifetime, and frequent maintenance is required [1]. Furthermore, contact wear creates dust particles, which are unwanted in cleanroom and vacuum applications.
A solution to overcome the disadvantages of wires and slip rings is a contactless energy transfer (CET) system that uses a rotating transformer. The transformer converts power across an airgap, a physical separation which provides the ability to rotate the secondary side of the transformer. An extra advantage could be the freedom in winding ratio, to transform the primary voltage level to the requirements of the load.
The contactless transfer of energy by means of a rotating transformer is under investigation since the 1970’s [2]. Later,the concept of a rotating transformer is used in applications such as the transcutaneous energy transmission for pacemakers [3] and inductive charging [4], both cases benefit from the CET. Rotating transformers can be used for the transfer of power and data signals to the moving part simultaneously, by using an extra inductive or capacitive coupling [5].
The axial rotating and pot core transformer geometry can be used for a rotating transformer. Both are investigated by [6] in terms of total volume and efficiency. The pot core geometry, shown in Fig. 1, gives better performance indices in terms of flux density, magnetic coupling and losses. Therefore, this topology is further investigated in this paper.
This paper presents the design of a rotating transformer for a power transfer of 1 kW peak to a load, rotating at 6000 rpm. The electronics on the load require an input DC voltage of 50 V. First, the geometry of the rotating transformer is analyzed. Second, analytical models are derived for the elec-tromagnetic and thermal behavior of the transformer. Finally, two prototype transformers are designed and manufactured to verify the analytical models.
II. ENERGY TRANSFER TOPOLOGY
The working principle of a rotating transformer can be obtained from Faraday’s law and Ampere’s circuital law. Ap-plying Lenz’s law and assuming a sinusoidal excitation, yields to an equation for the induced voltage over an N-turn winding and an expression for the transferred power, independent of the number of turns
(1)
(2)
wheref is the frequency of the applied voltage, Bpeak is the peak flux density andk f is the filling factor of the windings.The cross section of the inner core,Ae, is the minimal core area to guide the flux andSis the area available for windings, as defined in Fig. 2. A top view and cross section of a rotating pot core transformer are shown in Fig. 2a and Fig. 2b, respec-tively. The corresponding geometric parameters are listed inTable I. These expressions can be used to determine the core geometry and main parameters at the start of the design of a rotating transformer.
In each core an indentation can be found, to guide the wires of the winding out the core, which creates an incomplete axissymmetric layout. The effect of the indentation on the power transfer during rotation is investigated by a 3D FEM model [7]. Figure 3a-d show the response of the secondary voltage for a changing load resistance for different relative positions of the indentations in the core halves. In each figure an extra curve is inserted and identical responses for the different angular positions have been found. Concluding that an axissymmetric geometry can be assumed for further analysis.
The rotating transformer is a part of a DC-DC power conver-sion system. On the primary side of the rotating transformer, a DC-voltage is converted to a high frequency voltage by a half bridge converter. This reduces the size of the transformer and maximizes the power transfer, as shown in (2). On the secondary side of the transformer, the high frequency voltage is rectified and supplied to the load.
Two different winding topologies can be placed in the rotating pot core transformer. The first topology is the adjacent winding topology, which is shown in Fig. 4a, where each winding is placed in a separate core half. Therefore, one side of the transformer can be completely isolated from the other side, and for example placed in vacuum. The second topology is the coaxial winding topology, which is shown in Fig. 4b, where the windings are placed around each other. This topology requires the use of an extra winding bobbin, which reduces the effective winding area. Because both windings rotate around each other with a small gap in between, vibration due to rotating can easily damage the windings. In this paper, both winding topologies are compared and the differences from a magnetic and electrical point of view are identified.
III. ANALYSIS
The design of a rotating transformer requires modeling in the electromagnetic and thermal disciplines.
A. Magnetic model
An axissymmetric magnetic reluctance model has been derived to calculate the inductances of the transformer. The magnetic flux paths, shown in Fig. 5, have been identified by a 2D FEM model and based on the physical layout a reluctance model has been created. The model is shown Fig. 6a, for the adjacent winding topology. Rrepresents the reluctance and the subscripts c, ag and lk indicate the flux paths through the core, airgap and leakage paths, respectively.
Combining the reluctances of each half of the core and the airgaps, results in the reluctance network as shown in Fig. 6b, which can be rewritten as an equivalent electric circuit, shown n Fig. 6c. Where, Lmpresents the magnetizing inductance,Llkp and Llks presents the leakage inductance on the primary and secondary side, respectively.
1) Magnetizing inductance: The magnetizing inductance has been calculated by
(3)
where the path of the mutual flux lines has been assumed through the both half cores and the airgaps. The reluctances for the pot core are determined by
(4)
()
2
o
n
i
cb
or
r
l
r
R
z
mmp
=
V
(5)
Where ro and ri are the outer and inner core radius of the part,
展开阅读全文