收藏 分销(赏)

高中数学数列放缩专题用放缩法处理数列和不等问题含答案.doc

上传人:天**** 文档编号:9794264 上传时间:2025-04-08 格式:DOC 页数:10 大小:771.54KB
下载 相关 举报
高中数学数列放缩专题用放缩法处理数列和不等问题含答案.doc_第1页
第1页 / 共10页
高中数学数列放缩专题用放缩法处理数列和不等问题含答案.doc_第2页
第2页 / 共10页
点击查看更多>>
资源描述
用放缩法处理数列和不等问题(教师版) 一.先求和后放缩(主要是先裂项求和,再放缩处理) 例1.正数数列的前项的和,满足,试求: (1)数列的通项公式; (2)设,数列的前项的和为,求证: 解:(1)由已知得,时,,作差得:,所以,又因为为正数数列,所以,即是公差为2的等差数列,由,得,所以 (2),所以 真题演练1:(06全国1卷理科22题)设数列的前项的和,, (Ⅰ)求首项和通项;(Ⅱ)设,,证明:. 解: (Ⅰ)由 Sn=an-×2n+1+, n=1,2,3,… , ① 得 a1=S1= a1-×4+ 所以a1=2 再由①有 Sn-1=an-1-×2n+, n=2,3,4,… 将①和②相减得: an=Sn-Sn-1= (an-an-1)-×(2n+1-2n),n=2,3, … 整理得: an+2n=4(an-1+2n-1),n=2,3, … , 因而数列{ an+2n}是首项为a1+2=4,公比为4的等比数列,即 : an+2n=4×4n-1= 4n, n=1,2,3, …, 因而an=4n-2n, n=1,2,3, …, (Ⅱ)将an=4n-2n代入①得 Sn= ×(4n-2n)-×2n+1 + = ×(2n+1-1)(2n+1-2) = ×(2n+1-1)(2n-1) Tn= = × = ×( - ) 所以, = - ) = ×( - ) < 二.先放缩再求和 1.放缩后成等比数列,再求和 例2.等比数列中,,前n项的和为,且成等差数列. 设,数列前项的和为,证明:. 解:∵,,,∴公比. ∴. . (利用等比数列前n项和的模拟公式猜想) ∴. 真题演练2:(06福建卷理科22题)已知数列满足 (I)求数列的通项公式; (II)若数列滿足,证明:数列是等差数列; (Ⅲ)证明:. (I)解: 是以为首项,2为公比的等比数列 即  (II)证法一:              ①      ② ②-①,得 即   ③-④,得  即 是等差数列 (III)证明: 2.放缩后为“差比”数列,再求和 例3.已知数列满足:,.求证: 证明:因为,所以和同号,又因为,所以, 即,即.所以数列为递增数列,所以, 即,累加得:. 令,所以,两式相减得: ,所以,所以, 故得. 3.放缩后成等差数列,再求和 例4.已知各项均为正数的数列的前项和为,且. (1) 求证:; (2) 求证: 解:(1)在条件中,令,得, ,又由条件有,上述两式相减,注意到得 ∴ 所以, , 所以 (2)因为,所以,所以 ; 练习: 1.(08南京一模22题)设函数,已知不论为何实数,恒有且.对于正数列,其前n项和,. (Ⅰ) 求实数b的值;(II)求数列的通项公式; (Ⅲ)若,且数列的前n项和为,试比较和的大小并证明之. 解:(Ⅰ) (利用函数值域夹逼性);(II); (Ⅲ)∵,∴ 2.(04全国)已知数列的前项和满足:, (1)写出数列的前三项,,;(2)求数列的通项公式; (3)证明:对任意的整数,有 分析:⑴由递推公式易求:a1=1,a2=0,a3=2; ⑵由已知得:(n>1) 化简得: , 故数列{}是以为首项, 公比为的等比数列. 故∴ ∴数列{}的通项公式为:. ⑶观察要证的不等式,左边很复杂,先要设法对左边的项进行适当的放缩,使之能够求和。而左边=,如果我们把上式中的分母中的去掉,就可利用等比数列的前n项公式求和,由于-1和1交错出现,容易想到将式中两项两项地合并起来一起进行放缩,尝试知:, ,因此,可将保留,再将后面的项两两组合后放缩,即可求和。这里需要对进行分类讨论,(1)当为偶数时, (2)当是奇数时,为偶数, 所以对任意整数,有。 本题的关键是并项后进行适当的放缩。 3.(07武汉市模拟)定义数列如下: 求证:(1)对于恒有成立; (2)当,有成立; (3) 分析:(1)用数学归纳法易证。 (2)由得: …… 以上各式两边分别相乘得: ,又 (3)要证不等式, 可先设法求和:,再进行适当的放缩。 又 原不等式得证。 本题的关键是根据题设条件裂项求和。 用放缩法处理数列和不等问题(学生版) 一.先求和后放缩(主要是先裂项求和,再放缩处理) 例1.正数数列的前项的和,满足,试求: (1)数列的通项公式; (2)设,数列的前项的和为,求证: 真题演练1:(06全国1卷理科22题)设数列的前项的和,, (Ⅰ)求首项和通项;(Ⅱ)设,,证明:. 二.先放缩再求和 1.放缩后成等比数列,再求和 例2.等比数列中,,前n项的和为,且成等差数列. 设,数列前项的和为,证明:. 真题演练2:(06福建卷理科22题)已知数列满足 (I)求数列的通项公式; (II)若数列滿足,证明:数列是等差数列; (Ⅲ)证明:. 2.放缩后为“差比”数列,再求和 例3.已知数列满足:,.求证: 3.放缩后成等差数列,再求和 例4.已知各项均为正数的数列的前项和为,且. (1) 求证:; (2) 求证: 练习: 1.(08南京一模22题)设函数,已知不论为何实数,恒有且.对于正数列,其前n项和,. (Ⅰ) 求实数b的值;(II)求数列的通项公式; (Ⅲ)若,且数列的前n项和为,试比较和的大小并证明之. 2.(04全国)已知数列的前项和满足:, (1)写出数列的前三项,,;(2)求数列的通项公式; (3)证明:对任意的整数,有 3.(07武汉市模拟)定义数列如下: 求证:(1)对于恒有成立; (2)当,有成立; (3) 10 / 10
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传
相似文档                                   自信AI助手自信AI助手

当前位置:首页 > 教育专区 > 高中数学

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服