收藏 分销(赏)

工程力学教案-(详细讲稿).doc

上传人:精**** 文档编号:9748853 上传时间:2025-04-05 格式:DOC 页数:151 大小:12.11MB 下载积分:20 金币
下载 相关 举报
工程力学教案-(详细讲稿).doc_第1页
第1页 / 共151页
工程力学教案-(详细讲稿).doc_第2页
第2页 / 共151页


点击查看更多>>
资源描述
理论力学教案1 课题 第1讲——第一章绪论 学时 2学时 教学目的要求 1、掌握工程力学的任务、地位、作用和学习方法,可变形固体的基本假设,工程力学的研究对象(杆件),杆件变形的形的形式。 2.理解工程力学的研究对象(杆件)的几何特征,使学生对工程力学这门课程的任务、研究对象有一个全面的概念。 3.了解工程的发展简史和学习本课程的方法。 主要内容 1、简单介绍四种基本变形 重点难点 变形固体及其基本假设 教学方法 和手段 以讲授为主,使用电子教案 课后作业练习 预习:第二章       本次讲稿 第一章 绪论  第一节 工程力学的研究对象 建筑物中承受荷载而起骨架作用的部分称为结构。结构是由若干构件按一定方式组合而成的。组成结构的各单独部分称为构件。例如:支承渡槽槽身的排架是由立柱和横梁组成的刚架结构,如图1-1a所示;单层厂房结构由屋顶、楼板和吊车梁、柱等构件组成,如图1-1b所示。结构受荷载作用时,如不考虑建筑材料的变形,其几何形状和位置不会发生改变。 图1-1ab 结构按其几何特征分为三种类型: (1)杆系结构:由杆件组成的结构。杆件的几何特征是其长度远远大于横截面的宽度和高度。 (2)薄壁结构:由薄板或薄壳组成。薄板或薄壳的几何特征是其厚度远远小于另两个方向的尺寸。 (3)实体结构:由块体构成。其几何特征是三个方向的尺寸基本为同一数量级。 工程力学的研究对象主要是杆系结构。 第二节 工程力学的研究内容和任务 工程力学的任务是研究结构的几何组成规律,以及在荷载的作用下结构和构件的强度、刚度和稳定性问题。研究平面杆系结构的计算原理和方法,为结构设计合理的形式,其目的是保证结构按设计要求正常工作,并充分发挥材料的性能,使设计的结构既安全可靠又经济合理。 进行结构设计时,要求在受力分析基础上,进行结构的几何组成分析,使各构件按一定的规律组成结构,以确保在荷载的作用下结构几何形状不发生发变。 结构正常工作必须满足强度、刚度和稳定性的要求。 强度是指抵抗破坏的能力。满足强度要求就是要求结构的构件在正常工作时不发生破坏。 刚度是指抵抗变形的能力。满足刚度要求就是要求结构的构件在正常工作时产生的变形不超过允许范围。 稳定性是指结构或构件保持原有的平衡状态的能力。满足稳定性要求就是要求结构的构件在正常工作时不突然改变原有平衡状态,以免因变形过大而破坏。 按教学要求,工程力学主要研究以下几个部分的内容。 (1)静力学基础。这是工程力学的重要基础理论。包括物体的受力分析、力系的简化与平衡等刚体静力学基础理论。 (2)杆件的承载能力计算。这部分是计算结构承载能力计算的实质。包括基本变形杆件的内力分析和强度、刚度计算,压杆稳定和组合变形杆件的强度、刚度计算。 (3)静定结构的内力计算。这部分是静定结构承载能力计算和超静定结构计算的基础。包括研究结构的组成规律、静定结构的内力分析和位移计算等。 (4)超静定结构的内力分析。是超静定结构的强度和刚度问题的基础。包括力法、位移法、力矩分配法和矩阵位移法等求解超静定结构内力的基本方法。 第三节 刚体、变形固体及其基本假设 工程力学中将物体抽象化为两种计算模型:刚体和理想变形固体。 刚体是在外力作用下形状和尺寸都不改变的物体。实际上,任何物体受力的作用后都发生一定的变形,但在一些力学问题中,物体变形这一因素与所研究的问题无关或对其影响甚微,这时可将物体视为刚体,从而使研究的问题得到简化。 理想变形固体是对实际变形固体的材料理想化,作出以下假设: (1)连续性假设。认为物体的材料结构是密实的,物体内材料是无空隙的连续分布。 (2)均匀性假设。认为材料的力学性质是均匀的,从物体上任取或大或小一部分,材料的力学性质均相同。 (3)向同性假设。认为材料的力学性质是各向同性的,材料沿不同方向具有相同的力学性质,而各方向力学性质不同的材料称为各向异性材料。本教材中仅研究各向同性材料。 按照上述假设理想化的一般变形固体称为理想变形固体。刚体和变形固体都是工程力学中必不可少的理想化的力学模型。 变形固体受荷载作用时将产生变形。当荷载撤去后,可完全消失的变形称为弹性变形;不能恢复的变形称为塑性变形或残余变形。在多数工程问题中,要求构件只发生弹性变形。工程中,大多数构件在荷载的作用下产生的变形量若与其原始尺寸相比很微小,称为小变形。小变形构件的计算,可采取变形前的原始尺寸并可略去某些高阶无穷小量,可大大简化计算。 综上所述,工程力学把所研究的结构和构件看作是连续、均匀、各向同性的理想变形固体,在弹性范围内和小变形情况下研究其承载能力。 第四节 荷载的分类 结构工作时所承受的主动外力称为荷载。荷载可分为不同的类型。 (1)按作用性质可分为静荷载和动荷载。由零逐渐缓慢增加加到结构上的荷载称为静荷载,静荷载作用下不产生明显的加速度。大小方向随时间而改变的荷载称为动荷载。地震力、冲击力、惯性力等都为动荷载。 (2)按作用时间的长短可分为恒荷载和活荷载。永久作用在结构上大小、方向不变的荷载称为恒荷载。结构、固定设备的自重等都为恒荷载。暂时作用在结构上的荷载称为活荷载。风、雪荷载等都是活荷载。 (3)按作用范围可分为集中荷载和分布荷载。若荷载的作用范围与结构的尺寸相比很小时,可认为荷载集中作用于一点,称为集中荷载。分布作用在体积、面积和线段上的荷载称为分布荷载。结构的自重、风、雪等荷载都是分布荷载。当以刚体为研究对象时,作用在结构上的分布荷载可用其合力(集中荷载)代替;但以变形体为研究对象时,作用在结构上的分布荷载不能用其合力代替。 ` 理论力学教案2 课题 第2讲——第二章刚体静力学基础 学时 4学时+2学时习题课 教学目的要求 1、 掌握力学的基本概念和公理。 2、 熟悉各种常见约束的性质,熟练地画出受力图。 主要内容 1、 静力学基本概念。 2、 静力学基本公理。 3、 约束与约束反力。 物体的受力分析与受力图。 重点难点 1、 平衡、刚体和力的概念和静力学的基本公理。 2、 掌握物体的受力分析的方法 3、 正确地选取分离体,并画出受力图是求解静力学的关键, 教学方法 和手段 以讲授为主,使用电子教案 课后作业练习 问题:P12:1,2,3,4,5,6 习题:P12:1,2,3 预习:第三章       本次讲稿 第二章 刚体静力学基础 第一节 静力学基本概念 静力学是研究物体的平衡问题的科学。主要讨论作用在物体上的力系的简化和平衡两大问题。所谓平衡,在工程上是指物体相对于地球保持静止或匀速直线运动状态,它是物体机械运动的一种特殊形式。 一、 刚体的概念 工程实际中的许多物体,在力的作用下,它们的变形一般很微小,对平衡问题影响也很小,为了简化分析,我们把物体视为刚体。所谓刚体,是指在任何外力的作用下,物体的大小和形状始终保持不变的物体。静力学的研究对象仅限于刚体,所以又称之为刚体静力学。 二、力的概念 力的概念是人们在长期的生产劳动和生活实践中逐步形成的,通过归纳、概括和科学的抽象而建立的。力是物体之间相互的机械作用,这种作用使物体的机械运动状态发生改变,或使物体产生变形。力使物体的运动状态发生改变的效应称为外效应,而使物体发生变形的效应称为内效应。刚体只考虑外效应;变形固体还要研究内效应。经验表明力对物体作用的效应完全决定于以下力的三要素: (1)力的大小 是物体相互作用的强弱程度。在国际单位制中,力的单位用牛顿(N)或千牛顿(kN),1kN=103N。 (2)力的方向 包含力的方位和指向两方面的涵义。如重力的方向是“竖直向下”。“竖直”是力作用线的方位,“向下”是力的指向。 (3)力的作用位置 是指物体上承受力的部位。一般来说是一块面积或体积,称为分布力;而有些分布力分布的面积很小,可以近似看作一个点时,这样的力称为集中力。 如果改变了力的三要素中的任一要素,也就改变了力对物体的作用效应。 既然力是有大小和方向的量,所以力是矢量。可以用一带箭头的线段来表示,如图2-1所示,线段AB长度按一定的比例尺表示力F的大小,线段的方位和箭头的指向表示力的方向。线段的起点A或终点B表示力的作用点。线段AB的延长线(图中虚线)表示力的作用线。 图2-1 本教材中,用黑体字母表示矢量,用对应字母表示矢量的大小。 一般来说,作用在刚体上的力不止一个,我们把作用于物体上的一群力称为力系。如果作用于物体上的某一力系可以用另一力系来代替,而不改变原有的状态,这两个力系互称等效力系。如果一个力与一个力系等效,则称此力为该力系的合力,这个过程称力的合成;而力系中的各个力称此合力的分力,将合力代换成分力的过程为力的分解。在研究力学问题时,为方便地显示各种力系对物体作用的总体效应,用一个简单的等效力系(或一个力)代替一个复杂力系的过程称为力系的简化。力系的简化是刚体静学的基本问题之一。 第二节 静力学公理 所谓公理就是无需证明就为大家在长期生活和生产实践中所公认的真理。静力学公理是静力学全部理论的基础。 公理一 二力平衡公理 作用于同一刚体上的两个力成平衡的必要与充分条件是:力的大小相等,方向相反,作用在同一直线上。可以表示为:F=-F/或F+F/=0 此公理给出了作用于刚体上的最简力系平衡时所必须满足的条件,是推证其它力系平衡条件的基础。在两个力作用下处于平衡的物体称为二力体,若物体是构件或杆件,也称二力构件或二力杆件简称二力杆。 公理二 加减平衡力系公理 在作用于刚体的任意力系中,加上或减去平衡力系,并不改变原力系对刚体作用效应。推论一 力的可传性原理 作用于刚体上的力可以沿其作用线移至刚体内任意一点,而不改变该力对刚体的效应。 图2-2 证明:设力F作用于刚体上的点A,如图2-2所示。在力F作用线上任选一点B,在点B上加一对平衡力F1和F2,使 F1= - F2=F 则F1、F2、F构成的力系与F等效。将平衡力系F、F2减去,则F1与F等效。此时,相当于力F已由点A沿作用线移到了点B。 由此可知,作用于刚体上的力是滑移矢量,因此作用于刚体上力的三要素为大小、方向和作用线。 公理三 力的平行四边形法则 作用于物体上同一点的两个力可以合成为作用于该点的一个合力,它的大小和方向由以这两个力的矢量为邻边所构成的平行四边形的对角线来表示。如图2-3a所示,以FR表示力F1和力F2的合力,则可以表示为:FR=F1+F2。即作用于物体上同一点两个力的合力等于这两个力的矢量合。 图2-3 在求共点两个力的合力时,我们常采用力的三角形法则:(如图2-3b)所示。从刚体外任选一点a作矢量ab代表力F1,然后从b的终点作bc代表力F2,最后连起点a与终点c得到矢量ac,则ac就代表合力矢FR。分力矢与合力矢所构成的三角形abc称为力的三角形。这种合成方法称为力三角形法则。 推论二 三力平衡汇交定理 刚体受同一平面内互不平行的三个力作用而平衡时,则此三力的作用线必汇交于一点。 图2-4 证明:设在刚体上三点A、B、C分别作用有力F1、 F2、F3,其互不平行,且为平衡力系,如图2-4所示,根据力的可传性,将力F1和F2移至汇交点O,根据力的可传性公理,得合力FR1,则力F3与FR1平衡,由公理一知,F3与FR1必共线,所以力F1的作用线必过点O。 公理四 作用与反作用公理 两个物体间相互作用力,总是同时存在,它们的大小相等,指向相反,并沿同一直线分别作用在这两个物体上。 物体间的作用力与反作用力总是同时出现,同时消失。可见,自然界中的力总是成对地存在,而且同时分别作用在相互作用的两个物体上。这个公理概括了任何两物体间的相互作用的关系,不论对刚体或变形体,不管物体是静止的还是运动的都适用。应该注意,作用力与反作用力虽然等值、反向、共线,但它们不能平衡,因为二者分别作用在两个物体上,不可与二力平衡公理混淆起来。 公理五 刚化原理 变形体在已知力系作用下平衡时,若将此变形体视为刚体(刚化),则其平衡状态不变。 此原理建立了刚体平衡条件与谈形体平衡条件之间的关系,即关于刚体的平衡条件,对于变形体的平衡来说,也必须满足。但是,满足了刚体的平衡条件,变形体不一定平衡。例如一段软绳,在两个大小相等,方向相反的拉力作用下处于平衡,若将软绳变成刚杆,平衡保持不变。把过来,一段刚杆在两个大小相等、方向相反的压力作用下处于平衡,而绳索在此压力下则不能平衡。可见,刚体的平衡条件对于变形体的平衡来说只是必要条件而不是充分条件。 第三节 约束与约束反力 工程上所遇到的物体通常分两种:可以在空间作任意运动的物体称为自由体,如飞机、火箭等;受到其它物体的限制,沿着某些方向不能运动的物体称为非自由体。如悬挂的重物,因为受到绳索的限制,使其在某些方向不能运动而成为非自由体,这种阻碍物体运动的限制称为约束。约束通常是通过物体间的直接接触形成的。 既然约束阻碍物体沿某些方向运动,那么当物体沿着约束所阻碍的运动方向运动或有运动趋势时,约束对其必然有力的作用,以限制其运动,这种力称为约束反力。简称反力。约束反力的方向总是与约束所能阻碍的物体的运动或运动趋势的方向相反,它的作用点就在约束与被约束的物体的接触点,大小可以通过计算求得。 工程上通常把能使物体主动产生运动或运动趋势的力称为主动力。如重力、风力、水压力等。通常主动力是已知的,约束反力是未知的,它不仅与主动力的情况有关,同时也与约束类型有关。下面介绍工程实际中常见的几种约束类型及其约束反力的特性。 一、 柔性约束 图2-5 图2-6 绳索、链条、皮带等属于柔索约束。理想化条件:柔索绝对柔软、无重量、无粗细、不可伸长或缩短。由于柔索只能承受拉力,所以柔索的约束反力作用于接触点,方向沿柔索的中心线而背离物体,为拉力。如图2-5和图2-6所示。 二、光滑接触面约束 图2-7 图2-8 当物体接触面上的摩擦力可以忽略时,即可看作光滑接触面,这时两个物体可以脱离开,也可以沿光滑面相对滑动,但沿接触面法线且指向接触面的位移受到限制。所以光滑接触面约束反力作用于接触点,沿接触面的公法线且指向物体,为压力。如图2-7和图2-8所示。 三、光滑铰链约束 图2-9 工程上常用销钉来联接构件或零件,这类约束只限制相对移动不限制转动,且忽略销钉与构件间的磨擦。若两个构件用销钉连接起来,这种约束称为铰链约束,简称铰连接或中间铰,图2-9a所示。图2-9b为计算简图。铰链约束只能限制物体在垂直于销钉轴线的平面内相对移动,但不能限制物体绕销钉轴线相对转动。如图2-9c所示,铰链约束的约束反力作用在销钉与物体的接触点D,沿接触面的公法线方向,使被约束物体受压力。但由于销钉与销钉孔壁接触点与被约束物体所受的主动力有关,一般不能预先确定,所以约束反力Fc的方向也不能确定。因此,其约束反力作用在垂直于销钉轴线平面内,通过销钉中心,方向不定。为计算方便,铰链约束的约束反力常用过铰链中心两个大小未知的正交分力Xc,Yc来表示如图2-9d所示。两个分力的指向可以假设。 四、固定铰支座: 图2-10 将结构物或构件用销钉与地面或机座连接就构成了固定铰支座,如图2-10a所示。固定铰支座的约束与铰链约束完全相同。简化记号和约束反力如图2-10b和图2-10c。 五、辊轴支座 图2-11 在固定铰支座和支承面间装有辊轴,就构成了辊轴支座,又称活动铰支座,如图2-11a所示。这种约束只能限制物体沿支承面法线方向运动,而不能限制物体沿支承面移动和相对于销钉轴线转动。所以其约束反力垂直于支承面,过销钉中心指向可假设。如图2-11b和图2-11c所示。 六、链杆约束 图2-12 两端以铰链与其它物体连接中间不受力且不计自重的刚性直杆称链杆,如图2-12a所示。这种约束反力只能限制物体沿链杆轴线方向运动,因此链杆的约束反力沿着链杆,两端中心连线方向,指向或为拉力或为压力。如图2-12b和图2-12c所示。链杆属于二力杆的一种特殊情形。 七、固定端约束 图2-13 将构件的一端插入一固定物体(如墙)中,就构成了固定端约束。在连接处具有较大的刚性,被约束的物体在该处被完全固定,即不允许相对移动也不可转动。固定端的约束反力,一般用两个正交分力和一个约束反力偶来代替,如图2-13所示。 第四节 物体的受力分析与受力图 静力学问题大多是受一定约束的非自由刚体的平衡问题,解决此类问题的关键是找出主动力与约束反力之间的关系。因此,必须对物体的受力情况作全面的分析,即物体的受力分析,它是力学计算的前提和关键。物体的受力分析包含两个步骤:一是把该物体从与它相联系的周围物体中分离出来,解除全部约束,单独画出该物体的图形,称为取分离体。二是在分离体上画出全部主动力和约束反力,这称为画受力图。 一、 下面举例说明物体受力分析的方法。 例2-1 起吊架由杆件AB和CD组成,起吊重物的重量为Q。不计杆件自重,作杆件AB的受力图。 图2-14 解:取杆件AB为分离体,画出其分离体图。 杆件AB上没有荷载,只有约束反力。A端为固定铰支座。约束反力用两个垂直分力XA和YA表示,二者的指向是假定的。D点用铰链与CD连接,因为CD为二力杆,所以铰D反力的作用线沿C、D两点连线,以FD表示。图中FD的指向也是假定的。B点与绳索连接,绳索作用给B点的约束反力FT沿绳索、背离杆件AB。图2-14b为杆件AB的受力图。应该注意,(图b)中的力FT不是起吊重物的重力FG。力FT是绳索对杆件AB的作用力;力FG是地球对重物的作用力。这两个力的施力物体和受力物体是完全不同的。在绳索和重物的受(图c)上,作用有力FT的反作用力FTˊ和重力FG。由二力平衡条件,力FTˊ与力FG是反向、等值的;由作用反作用定律,力FT与FTˊ是反向、等值的。所以力FT与力FG大小相等,方向相同。 例2-2 水平梁AB用斜杆CD支撑,A、C、D三处均为光滑铰链连接,如图2-15所示。梁上放置一重为FG1的电动机。已知梁重为FG2,不计杆CD自重,试分别画出杆CD和梁AB的受力图。 图2-15 解: (1)取CD为研究对象。由于斜杆CD自重不计,只在杆的两端分别受有铰链的约束反力FC和FD的作用,由些判断CD杆为二力杆。根据公理一,FC和FD两力大小相等、沿铰链中心连线CD方向且指向相反。斜杆CD的受力图如图2-15b所示。 (2)取梁AB(包括电动机)为研究对象。它受FG1、FG2两个主动力的作用;梁在铰链D处受二力杆CD给它的约束反力FDˊ的作用,根据公理四,FDˊ=-FD;梁在A处受固定铰支座的约束反力,由于方向未知,可用两个大小未知的正交分力XA和YA表示。梁AB的受力图如图2-15c所示。  例2-3 简支梁两端分别为固定铰支座和可动铰支座,在C处作用一集中荷载FP(图2-16a),梁重不计,试画梁AB的受力图。 图2-16 解:取梁AB为研究对象。作用于梁上的力有集中荷载FP,可动铰支座B的反力FB,铅垂向上,固定铰支座A的反力用过点A的两个正交分力XA的YA表示。受力图如图2-16b所示。由于些梁受三个力作用而平衡,故可由推论二确定FA的方向。用点D表示力FP和FB的作用线交点。FA的作用线必过交点D,如图2-16c所示。 例2-4 三铰拱桥由左右两拱铰接而成,如图2-17a所示。设各拱自重不计,在拱AC上作用荷载F。试分别画出拱AC和CB的受力图。 图2-17 解:(1)取拱CB为研究对象。由于拱自重不计,且只在B、C处受到铰约束,因此CB为二力构件。在铰链中心B、C分别受到FB和FC的作用,且FB=-FC。拱CB的受力图如图2-17b所示。 (2)取拱AC连同销钉C为研究对象。由于自重不计,主动力只有荷载F;点C受拱CB施加的约束力FCˊ,且FCˊ=-FC;点A处的约束反力可分解为XA和YA。拱AC的受力图如图2-17c所示。 又拱AC在F、FCˊ和FA三力作用下平衡,根据三力平衡汇交定理,可确定出铰链A处约束反力FA的方向。点D为力F与FCˊ的交点,当拱AC平衡时,FA的作用线必通过点D,如图2-17d所示,FA的指向,可先作假设,以后由平衡条件确定。 例2-5 图2-18a所示系统中,物体F重FG,其它和构件不计自重。作(1)整体;(2)AB杆;(3)BE杆;(4)杆CD、轮C、绳及重物F所组成的系统的受力图。 图2-18 解:整体受力图如图2-18a所示。固定支座A自有两个垂直反力和一个约束反力偶。铰C、D、E和G点这四处的约束反力对整体来说是内力,受力图上不应画出。 杆件AB的受力图如图2-18b所示。对杆件AB来说,铰B、D的反力是外力,应画出。 杆件BE的受力图如图2-18c所示。BE上B点的反力XBˊ和YBˊ是AB上XB和YB反作用力,必须等值、反向的画出。 杆件CD、轮C、绳和重物F所组成的系统的受力图如图所示。其上的约束反力分别是图2-18b和图2-18c上相应力的反作用力,它们的指向分别与相应力的指向相反。如XEˊ是图2-18c上XE的反作用力,力XEˊ的指向应与力XE的指向相反,不能再随意假定。铰C的反力为内力,受力图上不应画出。 在画受力图时应注意如下几个问题:(1)明确研究对象并取出脱离体。(2)要先画出全部的主动力。(3)明确约束反力的个数。凡是研究对象与周围物体相接触的地方,都一定有约束反力,不可随意增加或减少。(4)要根据约束的类型画约束反力。即按约束的性质确定约束反力的作用位置和方向,不能主观臆断。(5)二力杆要优先分析。(6)对物体系统进行分析时注意同一力,在不同受力图上的画法要完全一致;在分析两个相互作用的力时,应遵循作用和反作用关系,作用力方向一经确定,则反作用力必与之相反,不可再假设指向。(7)内力不必画出。 思考题 2-1 说明下列式子的意义和区别。 (1)F1=F2和F1=F2; (2)FR=F1+F2和FR=F1+F2 2-2 力的可传性原理的适用条件是什么?如图2-19所示,能否根据力的可传性原理,将作用于杆AC上的力F沿其作用线移至杆BC上而成力Fˊ? 图2-19 图2-20 2-3 作用于刚体上大小相等、方向相同的两个力对刚体的作用是否等效? 2-4 物体受汇交于一点的三个力作用而处于平衡,此三力是否一定共面?为什么? 2-5 图2-20中力F作用在销钉C上,试问销钉C对AC的力与销钉C对BC的力是否等值、反向、共线?为什么? 2-6 图2-21中各物体受力图是否正确?若有错误试改正。 理论力学教案3 课题 第3讲——第三章平面汇交力系 课时 4学时 教学目的要求 1、 掌握平面汇交力系的合成与平衡。 2、 掌握平面汇交力系合成的几何法和解析法。 3、理解力在直角坐标系的投影,能熟练计算力在直角坐标轴上的投影。 主要内容 1、 平面汇交力系的合成与平衡的几何法。 2、 平面汇交力系合成与平衡的解析法 重点难点 平面汇交力系合成与平衡的解析法 教学方法 和手段 以讲授为主,使用电子教案 课后作业练习 问题:P21:1,2,3,4,5 习题:P22:1,2,3,4,5,6,8 预习:第四章     \   本次讲稿 第三章 平面汇交力系 根据力系中各力作用线的位置,力系可分为平面力系和空间力系。各力的作用线都在同一平面内的力系称为平面力系。在平面力系中又可以分为平面汇交力系、平面平行力系、平面力偶系和平面一般力系。在平面力系中,各力作用线汇交于一点的力系称平面汇交力系。本章讨论平面汇交力系的合成与平衡问题。 §3-1平面汇交力系合成与平衡的几何法 一、平面汇交力系合成的几何法 设在某刚体上作用有由力F1、F2、F3、F4组成的平面汇交力系,各力的作用线交于点A,如图3-1a所示。由力的可传性,将力的作用线移至汇交点A;然后由力的合成三角形法则将各力依次合成,即从任意点a作矢量ab代表力矢F1,在其末端b作矢量bc代表力矢F2,则虚线ac表示力矢F1和F2的合力矢FR1;再从点C作矢量cd代表力矢F3,则ad表示FR和F3的合力FR2;最后从点d作de代表力矢F4,则ae代表力矢FR2与F4的合力矢,亦即力F1 、F2 、F3 、F4的合力矢FR,其大小和方向如图3-1b,其作用线通过汇交点A。 图3-1 作图3-1b时,虚线ac和ad不必画出,只需把各力矢首尾相连,得折线abcd,则第一个力矢F1的起点a向最后一个力矢F4的终点e作ae,即得合力矢FR。各分力矢与合力矢构成的多边形称为力的多边形,表示合力矢的边ae称为力的多边形的逆封边。这种求合力的方法称为力的多边形法则。 若改变各力矢的作图顺序,所得的力的多边形的形状则不同,但是这并不影响最后所得的逆封边的大小和方向。但应注意,各分力矢必须首尾相连,而环绕力多边形周边的同一方向,而合力矢则把向封闭力多边形。 上述方法可以推广到由n个力F1 、F2 、…、Fn组成的平面汇交力系:平面汇交力系合成的结果是一个合力,合力的作用线过力系的汇交点,合力等于原力系中所有各力的矢量和。 可用矢量式表示为 FR=F1 +F2 +…+Fn =ΣF (3-1) 例3-1 同一平面的三根钢索边连结在一固定环上,如图3-2所示,已知三钢索的拉力分别为:F1=500N,F2=1000N,F3=2000N。试用几何作图法求三根钢索在环上作用的合力。 图3-2 解 先定力的比例尺如图。作力多边形先将各分力乘以比例尺得到各力的长度,然后作出力多边形图(3-2b),量得代表合力矢的长度为,则FR的实际值为 FR=2700N FR的方向可由力的多边形图直接量出,FR与F1的夹角为71º31'。 二、平面汇交力系平衡的几何条件 图3-3 在图3-3a中,平面汇交力系合成为一合力,即与原力系等效。若在该力系中再加一个与等值、反向、共线的力,根据二力平衡公理知物体处于平衡状态,即为平衡力系。对该力系作力的多边形时,得出一个闭合的力的多边形,即最后一个力矢的末端与第一个力矢的始端相重合,亦即该力系的合力为零。因此,平面汇交力系的平衡的必要与充分的几何条件是:力的多边形自行封闭,或各力矢的矢量和等于零。用矢量表示为 FR =ΣF=0               (3-2) 例3-2 图3-4a所求一支架,A、B为铰链支座,C为圆柱铰链。斜撑杆BC与水平杆AC的夹角为30º。在支架的C处用绳子吊着重G=20kN的重物。不计杆件的自重,试求各杆所受的力。 图3-4 解 杆AC和BC均为二力杆,其受力如图3-4b所示。取销钉C为研究对象,作用在它上面的力有:绳子的拉力FT(FT=G),AC杆和BC杆对销钉C的作用力FCA和FCB。这三个力为一平面汇交力系(销钉C的受力图如图3-4c所示)。 根据平面汇交力系平衡的几何条件,FT、FCA和FCB应组成闭合的力三角形。选取比例尺如图,先画已知力FT=ab,过a、b两点分别作直线平行于FCA和FCB得交点c,于是得力三角形abc,顺着abc的方向标出箭头,使其首尾相连,则矢量ca和bc就分别表示力FCA和FCB的大小和方向。用同样的比例尺量得 FCA=34.6kN FCB=40kN §3-2平面汇交力系合成与平衡的解析法 求解平面汇交力系问题的几何法,具有直观简捷的优点,但是作图时的误差难以避免。因此,工程中多用解析法来求解力系的合成和平衡问题。解析法是以力在坐标轴上的投影为基础的。 一、 在坐标轴上的投影 如图3-5所示,设力F作用于刚体上的A点,在力作用的平面内建立坐标系oxy,由力F的起点和终点分别向x轴作垂线,得垂足a1和b1,则线段a1b1冠以相应的正负号称为力F在x轴上的投影,用X表示。即X=±a1b1;同理,力F在y轴上的投影用Y表示,即Y=±a2b2。 力在坐标轴上的投影是代数量,正负号规定:力的投影由始到末端与坐标轴正向一致其投影取正号,反之取负号。投影与力的大小及方向有关,即 (3-3) 式中α、β分别为F与X、Y轴正向所夹的锐角。 图3-5 反之,若已知力F 在坐标轴上的投影X、Y,则该力的大小及方向余弦为               (3-4) 应当注意,力的投影和力的分量是两个不同的概念。投影是代数量,而分力是矢量;投影无所谓作用点,而分力作用点必须作用在原力的作用点上。另外仅在直角坐标系中在坐标上的投影的绝对值和力沿该轴的分量的大小相等。 二、合力投影定理 设一平面汇交力系由F1、F2、F3和F4作用于刚体上,其力的多边形abcde如图3-6所示,封闭边ae表示该力系的合力矢FR,在力的多边形所在平面内取一坐标系oxy,将所有的力矢都投影到x轴和y轴上。得 X=a1e1, X1=a1b1, X2=b1c1,X3=c1d1 ,X4=d1e1 由图3-6可知 a1e1=a1b1+b1c1+c1d1 +d1e1 即 X=X1+X2+X3+X4 同理 Y=Y1+Y2+Y3+Y4 将上述关系式推广到任意平面汇交力系的情形,得 (3-5) 图3-6 即合力在任一轴上的投影,等于各分力在同一轴上投影的代数和,这就是合力投影定理。 三、平面汇交力系合成的解析法 用解析法求平面汇交力系的合成时,首先在其所在的平面内选定坐标系oxy。求出力系中各力在x轴和y轴上的投影,由合力投影定理得          (3-6) 其中α是合力FR分别与X、Y轴正向所夹的锐角。 例3-3 如图3-7所求,固定圆环作用有四根绳索,其拉力分别为F1=0.2kN,F2=0.3kN,F3=0.5kN,F4=0.4kN,它们与轴的夹角分别为α1=30º,α2=45º,α3=0,α4=60º。试求它们的合力大小和方向。 图3-7 解 建立如图3-7所示直角坐标系。根据合力投影定理,有 X=ΣX=X1+X2+X3+X4=F1cosα1+F2 cosα2+F3 cosα3+F4 cosα4=1.085kN Y=ΣY=Y1+Y2+Y3+Y4=F1sinα1+F2 sinα2+F3sinα3-F4 sinα4=-0.234kN 由ΣX、ΣY的代数值可知,X沿X轴的正向,Y沿Y轴的负向。由式(3-6)得合力的大小 方向为 解得            α=12º12' 四、平面汇交力系平衡的解析条件 我们已经知道平面汇交力系平衡的必要与充分条件上其合力等于零,即FR=0。由式(3-6)可知,要使FR=0,须有 ΣX=0 ;ΣY=0               (3-8) 上式表明,平面汇交力系平衡的必要与充分条件是:力系中各力在力系所在平面内两个相交轴上投影的代数和同时为零。式(3-8)称为平面汇交力系的平衡方程。 式(2-8)是由两个独立的平衡方程组成的,故用平面汇交力系的平衡方程只能求解两个未知量。 例3-4 重量为G和重物,放置在倾角为α的光滑斜面上(如图3-8),试求保持重物成平衡时需沿斜面方向所加的力F和重物对斜面的压力FN。 图3-8 解 以重物为研究对象。重物受到重力G、拉力F和斜面对重物的作用力FN,其受力图如图3-8b所示。取坐标系oxy,列平衡方程 ΣX=0      Gsinα-F=0 (1) ΣY=0     -Gcosα+FN=0    (2) 解得   F= GsinαFN=Gcosα 则重物对斜面的压力FN'=Gcosα,指向和相反。 例3-5 重G=20kN的物体被绞车匀速吊起,绞车的绳子绕过光滑的定滑轮A(图3-9a),滑轮由不计重量的杆AB、AC支撑,A、B、C三点均为光滑铰链。试求AB、AC所受的力。 图3-9 解 杆AB和AC都是二力杆,其受力如图3-9b所示。假设两杆都受拉。取滑轮连同销钉A为研究对象。重物G通过绳索直接加在滑轮的一边。在其匀速上升时,拉力FT1=G,而绳索又在滑轮的另一边施加同样大小的拉力,即FT1=FT2。受力图如图3-9c所示,取坐标系Axy。 列平衡方程 由    ΣX=0 解得   FAC=-63.2kN 由    ΣY=0 解得   FAB=41.6kN 力FAC是负值,表示该力的假设方向与实际方向相反,因此杆AC是受压杆。 例3-6 连杆机构由三个无重杆铰接组成(如图3-10a),在铰B处施加一已知的竖向力FB,要使机构处于平衡状态,试问在铰C处施加的力FC应取何值? 图3-10 解 这是一个物体系统的平衡问题。从整个机构来看,它受四个力FB、FC、FA、FD不是平面汇交力系(图a),所以不能取整体作为研究对象求解。要求解的未知力F作用于铰C上,铰C受平面汇交力系的作用,所以应该通过研究铰C的平衡来求解。 铰C除受未知力FC外,还受到二力杆BC和DC的约束反力FAB和FBC和作用(图c)。这三个力都是未知的,只要能求出FAB和FBC之中的任意一个,就能根据铰C的平衡求出力FC。 铰B除受已知力FB的作用外,还受到二力杆AB和BC杆的约束反力FBA和FBC的作用。通过研究铰B的平衡可以求了BC杆的约束反力FBC。 综合以上分析结果,得到本题的解题思路:先以铰B为脱离体求BC杆的反力FBC;再以铰C为脱离体,求未知力FC。 (1)取铰B为脱离体,其受力图如图(b)所示。因为只需求反力FBC,所以选取x轴与不需求出的力FBA垂直。由平衡方程 ΣX=0      FBcos45º+FBCcos45º=0 解得 FBC=-FB (2)取C为脱离体,其受力图如图(c)所示。图上力FCB的大小是已知的,即FCB=FBC=-FB。为求力FC的大小,选取x轴与反力FCD垂直,由平衡方程 ΣX=0      -FCB-FBCcos45º=0 解得           通过以上分析和求解过程可以看出,在求解平衡问题时,要恰当地选取脱离体,恰当地选取坐标轴,以最简捷、合理的途径完成求解工作。尽量避免求解联立方程,以提高计算的工作效率。这些都是求解平衡问题所必须注意的。 思考题 3-1 如图3-11所示的平面汇交力系的各力多边形中,各代表什么意义? 图3-11 3-2 如图3-12所示,已知力F大小和其与x轴正向的夹角θ,试问能否求出此力在x轴上的投影?能否求出此力沿x轴方向的分力? 图3-12 3-3 同一个力在两个互相平行的轴上的投影有何关
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传

当前位置:首页 > 包罗万象 > 大杂烩

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2026 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服