收藏 分销(赏)

北师大版七年级上册数学知识点汇总.doc

上传人:人****来 文档编号:9709648 上传时间:2025-04-04 格式:DOC 页数:13 大小:142.50KB
下载 相关 举报
北师大版七年级上册数学知识点汇总.doc_第1页
第1页 / 共13页
北师大版七年级上册数学知识点汇总.doc_第2页
第2页 / 共13页
点击查看更多>>
资源描述
北师大版初中数学七年级上册知识点汇总 丰富的图形世界 ¤1. ¤2. ¤3. 球体:由球面围成的(球面是曲面) ¤4. 几何图形是由点、线、面构成的。 ①几何体与外界的接触面或我们能看到的外表就是几何体的表面。几何的表面有平面和曲面; ②面与面相交得到线; ③线与线相交得到点。 ※5. 棱:在棱柱中,任何相邻两个面的交线都叫做棱。 ※6. 侧棱:相邻两个侧面的交线叫做侧棱,所有侧棱长都相等。 ¤7. 棱柱的上、下底面的形状相同,侧面的形状都是长方形。 ¤8. 根据底面图形的边数,人们将棱柱分为三棱柱、四棱柱、五棱柱、六棱柱……它们底面图形的形状分别为三边形、四边形、五边形、六边形…… ¤9. 长方体和正方体都是四棱柱。 ¤10. 圆柱的表面展开图是由两个相同的圆形和一个长方形连成。 ¤11. 圆锥的表面展开图是由一个圆形和一个扇形连成。 有理数及其运算 ※ ※数轴的三要素:原点、正方向、单位长度(三者缺一不可)。 ※任何一个有理数,都可以用数轴上的一个点来表示。(反过来,不能说数轴上所有的点都表示有理数) ※如果两个数只有符号不同,那么我们称其中一个数为另一个数的相反数,也称这两个数互为相反数。(0的相反数是0) ※在数轴上,表示互为相反数的两个点,位于原点的侧,且到原点的距离相等。 ¤数轴上两点表示的数,右边的总比左边的大。正数在原点的右边,负数在原点的左边。 ※绝对值的定义:一个数a的绝对值就是数轴上表示数a的点与原点的距离。数a的绝对值记作|a|。 ※正数的绝对值是它本身;负数的绝对值是它的数;0的绝对值是0。 0 -1 -2 -3 1 2 3 越来越大 或 ※绝对值的性质:除0外,绝对值为一正数的数有两个,它们互为相反数; 互为相反数的两数(除0外)的绝对值相等; 任何数的绝对值总是非负数,即|a|≥0 ※比较两个负数的大小,绝对值大的反而小。比较两个负数的大小的步骤如下: ①先求出两个数负数的绝对值; ②比较两个绝对值的大小; ③根据“两个负数,绝对值大的反而小”做出正确的判断。 ※绝对值的性质: ①对任何有理数a,都有|a|≥0 ②若|a|=0,则|a|=0,反之亦然 ③若|a|=b,则a=±b ④对任何有理数a,都有|a|=|-a| ※有理数加法法则: ①同号两数相加,取相同符号,并把绝对值相加。 ②异号两数相加,绝对值相等时和为0;绝对值不等时取绝对值较大的数的符号,并用较大数的绝对值减去较小数的绝对值。 ③一个数同0相加,仍得这个数。 ※加法的交换律、结合律在有理数运算中同样适用。 ¤灵活运用运算律,使用运算简化,通常有下列规律:①互为相反的两个数,可以先相加; ②符号相同的数,可以先相加; ③分母相同的数,可以先相加; ④几个数相加能得到整数,可以先相加。 ※有理数减法法则: 减去一个数,等于加上这个数的相反数。 ¤有理数减法运算时注意两“变”:①改变运算符号; ②改变减数的性质符号(变为相反数) 有理数减法运算时注意一个“不变”:被减数与减数的位置不能变换,也就是说,减法没有交换律。 ¤有理数的加减法混合运算的步骤: ①写成省略加号的代数和。在一个算式中,若有减法,应由有理数的减法法则转化为加法,然后再省略加号和括号; ②利用加法则,加法交换律、结合律简化计算。 (注意:减去一个数等于加上这个数的相反数,当有减法统一成加法时,减数应变成它本身的相反数。) ※有理数乘法法则: ①两数相乘,同号得正,异号得负,绝对值相乘。 ②任何数与0相乘,积仍为0。 ※如果两个数互为倒数,则它们的乘积为1。(如:-2与 、 …等) ※乘法的交换律、结合律、分配律在有理数运算中同样适用。 ¤有理数乘法运算步骤:①先确定积的符号; ②求出各因数的绝对值的积。 ¤乘积为1的两个有理数互为倒数。注意: ①零没有倒数 ②求分数的倒数,就是把分数的分子分母颠倒位置。一个带分数要先化成假分数。 ③正数的倒数是正数,负数的倒数是负数。 ※有理数除法法则: ①两个有理数相除,同号得正,异号得负,并把绝对值相除。 ②0除以任何非0的数都得0。0不可作为除数,否则无意义。 指数 底数 幂 ※有理数的乘方 ※注意:①一个数可以看作是本身的一次方,如5=51; ②当底数是负数或分数时,要先用括号将底数括上,再在右上角写指数。 ※乘方的运算性质: ①正数的任何次幂都是正数; ②负数的奇次幂是负数,负数的偶次幂是正数; ③任何数的偶数次幂都是非负数; ④1的任何次幂都得1,0的任何次幂都得0; ⑤-1的偶次幂得1;-1的奇次幂得-1; ⑥在运算过程中,首先要确定幂的符号,然后再计算幂的绝对值。 ※有理数混合运算法则:①先算乘方,再算乘除,最后算加减。 ②如果有括号,先算括号里面的。 整式及其运算 ※代数式的概念: 用运算符号(加、减、乘除、乘方、开方等)把数与表示数的字母连接而成的式子叫做代数式。单独的一个数或一个字母也是代数式。 注意:①代数式中除了含有数、字母和运算符号外,还可以有括号; ②代数式中不含有“=、>、<、≠”等符号。等式和不等式都不是代数式,但等号和不等号两边的式子一般都是代数式; ③代数式中的字母所表示的数必须要使这个代数式有意义,是实际问题的要符合实际问题的意义。 ※代数式的书写格式: ①代数式中出现乘号,通常省略不写,如vt; ②数字与字母相乘时,数字应写在字母前面,如4a; ③带分数与字母相乘时,应先把带分数化成假分数后与字母相乘,如应写作; ④数字与数字相乘,一般仍用“×”号,即“×”号不省略; ⑤在代数式中出现除法运算时,一般按照分数的写法来写,如4÷(a-4)应写作;注意:分数线具有“÷”号和括号的双重作用。 ⑥在表示和(或)差的代差的代数式后有单位名称的,则必须把代数式括起来,再将单位名称写在式子的后面,如平方米 ※代数式的系数: 代数式中的数字中的数字因数叫做代数式的系数。如3x,4y的系数分别为3,4。 注意:①单个字母的系数是1,如a的系数是1; ②只含字母因数的代数式的系数是1或-1,如-ab的系数是-1。a3b的系数是1 ※代数式的项: 代数式表示6x2、-2x、-7的和,6x2、-2x、-7是它的项,其中把不含字母的项叫做常数项 注意:在交待某一项时,应与前面的符号一起交待。 ※同类项: 所含字母相同,并且相同字母的指数也相同的项叫做同类项。 注意:①判断几个代数式是否是同类项有两个条件:a.所含字母相同;b.相同字母的指数也相同。这两个条件缺一不可; ②同类项与系数无关,与字母的排列顺序无关; ③几个常数项也是同类项。 ※合差同类项: 把代数式中的同类项合并成一项,叫做合并同类项。 ①合并同类项的理论根据是逆用乘法分配律; ②合并同类项的法则是把同类项的系数相加,所得结果作为系数,字母和字母的指数不变。 注意: ①如果两个同类项的系数互为相反数,合并同类项后结果为0; ②不是同类项的不能合并,不能合并的项,在每步运算中都要写上; ③只要不再有同类项,就是最后结果,结果还是代数式。 ※根据去括号法则去括号: 括号前面是“+”号,把括号和它前面的“+”号去掉,括号里各项都不改变符号;括号前面是“-”号去掉,括号里各项都改变符号。 ※根据分配律去括号: 括号前面是“+”号看成+1,括号前面是“-”号看成-1,根据乘法的分配律用+1或-1去乘括号里的每一项以达到去括号的目的。 ※注意: ①去括号时,要连同括号前面的符号一起去掉; ②去括号时,首先要弄清楚括号前是“+”号还是“-”号; ③改变符号时,各项都变号;不改变符号时,各项都不变号。 整式 ※1. 单项式 ①由数与字母的积组成的代数式叫做单项式。单独一个数或字母也是单项式。 ②单项式的系数是这个单项式的数字因数,作为单项式的系数,必须连同数字前面的性质符号,如果一个单项式只是字母的积,并非没有系数. ③一个单项式中,所有字母的指数和叫做这个单项式的次数. ※2.多项式 ①几个单项式的和叫做多项式.在多项式中,每个单项式叫做多项式的项.其中,不含字母的项叫做常数项.一个多项式中,次数最高项的次数,叫做这个多项式的次数. ②单项式和多项式都有次数,含有字母的单项式有系数,多项式没有系数.多项式的每一项都是单项式,一个多项式的项数就是这个多项式作为加数的单项式的个数.多项式中每一项都有它们各自的次数,但是它们的次数不可能都作是为这个多项式的次数,一个多项式的次数只有一个,它是所含各项的次数中最高的那一项次数. ※3.整式单项式和多项式统称为整式. 整式的加减 ¤1. 整式的加减实质上就是去括号后,合并同类项,运算结果是一个多项式或是单项式. ¤2. 括号前面是“-”号,去括号时,括号内各项要变号,一个数与多项式相乘时,这个数与括号内各项都要相乘. 基本平面图形 一. 线段、射线、直线 ※1. 正确理解直线、射线、线段的概念以及它们的区别: 名称 图形 表示方法 端点 长度 直线 直线AB(或BA) 直线l 无端点 无法度量 射线 射线OM 1个 无法度量 线段 线段AB(或BA) 线段l 2个 可度量长度 ※2. 直线公理:经过两点有且只有一条直线. 二.比较线段的长短 ※1. 线段公理:两点间线段最短;两之间线段的长度叫做这两点之间的距离. ※2. 比较线段长短的两种方法: ①圆规截取比较法; ②刻度尺度量比较法. ※3. 用刻度尺可以画出线段的中点,线段的和、差、倍、分; 用圆规可以画出线段的和、差、倍. 三.角 ※1. 角:有公共端点的两条射线组成的图形叫做角; 这个公共端点叫做角的顶点; A O B 图1 这两条射线叫做角的边. b 图2 ※2. 角的表示法:角的符号为“∠” ①用三个字母表示,如图1所示∠AOB ②用一个字母表示,如图2所示∠b 1 图3 β 图4 ③用一个数字表示,如图3所示∠1 ④用希腊字母表示,如图4所示∠β ※经过两点有且只有一条直线。 ※两点之间的所有连线中,线段最短。 终边 始边 图5 ※两点之间线段的长度,叫做这两点之间的距离。 1º=60’1’=60” ※角也可以看成是由一条射线绕着它的端点旋转而成的。如图5所示: ※一条射线绕它的端点旋转,当终边和始边成一条直线时, 平角 图6 所成的角叫做平角。如图6所示: ※终边继续旋转,当它又和始边重合时, 周角 图7 所成的角叫做周角。如图7所示: ※从一个角的顶点引出的一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分线。 ※经过直线外一点,有且只有一条直线与这条直线平行。 ※如果两条直线都与第三条直线平行,那么这两条直线互相平行。 ※互相垂直的两条直线的交点叫做垂足。 ※平面内,过一点有且只有一条直线与已知直线垂直。 图8 C A B O ※如图8所示,过点C作直线AB的垂线,垂足为O点,线段CO的长度叫做点C到直线AB的距离。 设一个多边形的边数为n(n≥3,且n为整数),从一个顶点出发的对角线有(n-3)条;可以把n边形成(n-2)个三角形;这个n边形共有条对角线。 圆上两点之间的部分叫做弧,弧是一条曲线。 . 扇形,由一条弧和经过这条弧的端点的两条半径所组成的图形。 一元一次方程 1. 方程:含有未知数的等式就叫做方程. 2. 一元一次方程:只含有一个未知数(元)x,未知数x的指数都是1(次),这样的方程叫做一元一次方程. 例如: 1700+50x=1800, 2(x+1.5x)=5等都是一元一次方程. (例1) 3.方程的解:使方程中等号左右两边相等的未知数的值,叫做方程的解. (例2) 注:⑴方程的解和解方程是不同的概念,方程的解实质上是求得的结果,它是一个数值(或几个数值),而解方程的含义是指求出方程的解或判断方程无解的过程. ⑵方程的解的检验方法,首先把未知数的值分别代入方程的左、右两边计算它们的值,其次比较两边的值是否相等从而得出结论. (二)、等式的性质     等式的性质(1):等式两边都加上(或减去)同个数(或式子),结果仍相等.     等式的性质(1)用式子形式表示为:如果a=b,那么a±c=b±c 等式的性质(2):等式两边乘同一个数,或除以同一个不为0的数,结果仍相等, 等式的性质(2)用式子形式表示为:如果a=b,那么ac=bc;如果a=b(c≠0),那么= (三)、移项法则:把等式一边的某项变号后移到另一边,叫做移项.(例3) (四)、去括号法则 1.括号外的因数是正数,去括号后各项的符号与原括号内相应各项的符号相同. 2.括号外的因数是负数,去括号后各项的符号与原括号内相应各项的符号改变. (五)、解方程的一般步骤(例4) 1.去分母(方程两边同乘各分母的最小公倍数) 2.去括号(按去括号法则和分配律) 3.移项(把含有未知数的项移到方程一边,其他项都移到方程的另一边,移项要变号) 4.合并(把方程化成ax = b (a≠0)形式) 5.系数化为1(在方程两边都除以未知数的系数a,得到方程的解x=). 一.列一元一次方程解应用题的一般步骤 (1)审题:弄清题意.(2)找出等量关系:找出能够表示本题含义的相等关系.(3)设出未知数,列出方程:设出未知数后,表示出有关的含字母的式子,然后利用已找出的等量关系列出方程.(4)解方程:解所列的方程,求出未知数的值.(5)检验,写答案:检验所求出的未知数的值是否是方程的解,是否符合实际,检验后写出答案. 二、一元一次方程的实际应用 1. 和、差、倍、分问题: 增长量=原有量×增长率 现在量=原有量+增长量 (1)倍数关系:通过关键词语“是几倍,增加几倍,增加到几倍,增加百分之几,增长率……”来体现. (2)多少关系:通过关键词语“多、少、和、差、不足、剩余……”来体现. 例1:兄弟二人今年分别为15岁和9岁,多少年后兄的年龄是弟的年龄的2倍? 解:设x年后,兄的年龄是弟的年龄的2倍, 则x年后兄的年龄是15+x,弟的年龄是9+x. 由题意,得2×(9+x)=15+x 18+2x=15+x,移向得:2x-x=15-18 ∴x=-3 答:3年前兄的年龄是弟的年龄的2倍. (点拨:-3年的意义,并不是没有意义,而是指以今年为起点前的3年,是与3年后具有相反意义的量) 1.一个数的3倍比它的2倍多10,若设这个数为x,可得到方程__________. 2.用一根长80厘米的绳子围成一个长方形,且这个长方形的长比宽多10厘米,则这个长方形的长和宽各是_______、________.面积是_______. 2. 等积变形问题: (1)“等积变形”是以形状改变而体积不变为前提.常用等量关系为: ①形状面积变了,周长没变; ②原料体积=成品体积. (2 常见几何图形的面积、体积、周长计算公式,依据形虽变,但体积不变. ①圆柱体的体积公式 V=底面积×高=S·h= ②长方体的体积 V=长×宽×高=abc 例2将一个装满水的内部长、宽、高分别为300毫米,300毫米和80毫米的长方体铁盒中的水,倒入一个内 径为200毫米的圆柱形水桶中,正好倒满,求圆柱形水桶的高(精确到0.1毫米,≈3.14). 解:设圆柱形水桶的高为x毫米,依题意,得 ·()2x=300×300×80 1. 一根内径为3㎝的圆柱形长试管中装满了水,现把试管中的水逐渐滴入一个内径为8㎝、高为1.8㎝的圆柱形玻璃杯中,当玻璃杯装满水时,试管中的水的高度下降了____㎝. 3. 工程问题: 工程问题:工作量=工作效率×工作时间 完成某项任务的各工作量的和=总工作量=1  例3. 一件工程,甲独做需15天完成,乙独做需12天完成,现先由甲、乙合作3天后,甲有其他任务,剩下工程由乙单独完成,问乙还要几天才能完成全部工程? 解:设乙还需x天完成全部工程,设工作总量为单位1,由题意得,(+)×3+=1        1. 甲、乙工程队从相距100m的马路两端开始挖沟,甲工程队每天挖沟的进度是乙工程队的2倍少1m,若5天完工,两队每天各挖几米? 4.行程问题: 路程=速度×时间 时间=路程÷速度 速度=路程÷时间 (1)相遇问题: 快行距+慢行距=原距 (2)追及问题: 快行距-慢行距=原距 (3)航行问题:顺水(风)速度=静水(风)速度+水流(风)速度 逆水(风)速度=静水(风)速度-水流(风)速度 抓住两码头间距离不变,水流速和船速(静不速)不变的特点考虑相等关系. 例4. 甲、乙两站相距480公里,一列慢车从甲站开出,每小时行90公里,一列快车从乙站开出,每小时行140公里。   (1)慢车先开出1小时,快车再开。两车相向而行。问快车开出多少小时后两车相遇?   (2)两车同时开出,相背而行多少小时后两车相距600公里?   (3)两车同时开出,慢车在快车后面同向而行,多少小时后快车与慢车相距600公里?   (4)两车同时开出同向而行,快车在慢车的后面,多少小时后快车追上慢车?   (5)慢车开出1小时后两车同向而行,快车在慢车后面,快车开出后多少小时追上慢车? 解:设快车开出x小时后两车相遇,由题意得,140x+90(x+1)=480 解:设x小时后两车相距600公里,由题意得,(140+90)x+480=600 解:设x小时后两车相距600公里,由题意得,(140-90)x+480=600 解:设x小时后快车追上慢车。 由题意得,140x=90x+480 解:设快车开出x小时后追上慢车。由题意得,140x=90(x+1)+480 例4.1. 已知轮船逆水前进的速度为m千米/时,水流速度为2千米/时,则轮船在静水中的速度是__________。 1. A、B两地相距30千米,甲、乙两人分别从A、B两地同时出发,相向而行。已知甲比乙每小时多走1千米,经过2.5小时两人相遇,求甲、乙两人的速度? 5. 商品销售问题 (1)商品利润率=×100% (2)商品销售额=商品销售价×商品销售量 (3)商品的销售利润=(销售价-成本价)×销售量 (4)商品打几折出售,就是按原标价的百分之几十出售,如商品打8折出售,即按原标价的80%出售.有关关系式:商品售价=商品标价×折扣率 (5)商品利润=商品售价—商品进价=商品标价×折扣率—商品进价 例5.工艺商场按标价销售某种工艺品时,每件可获利45元;按标价的八五折销售该工艺品8件与将标价降低35元销售该工艺品12件所获利润相等.该工艺品每件的进价、标价分别是多少元? 解:设该工艺品每件的进价是元,标价是(45+x)元.依题意,得: 8(45+x)×0.85-8x=(45+x-35)×12-12x 1. 一家商店将某种服装按进价提高40%后标价,又以8折优惠卖出,结果每件仍获利15元,这种服装每件的进价是多少? 6. 储蓄问题 ⑴ 顾客存入银行的钱叫做本金,银行付给顾客的酬金叫利息,本金和利息合称本息和,存入银行的时间叫做期数,利息与本金的比叫做利率.利息的20%付利息税 ⑵ 利息=本金×利率×期数 本息和=本金+利息 利息税=利息×税率(20%) (3) 利润=×100% 例6. 国家规定存款利息的纳税方法是:利息税=利息×20%,储户取款时由银行代扣代收.若银行1年定期储蓄的年利率为1.98%,某储户取出1年到期的本金及利息时,扣除了利息税31.68元,则银行向该储户支付的现金是多少元? 1. 某同学把250元钱存入银行,整存整取,存期为半年。半年后共得本息和252.7元,求银行半年期的年利率是多少?(不计利息税) 7. 数字问题 (1)要搞清楚数的表示方法:一般可设个位数字为a,十位数字为b,百位数字为c. 十位数可表示为10b+a, 百位数可表示为100c+10b+a. 然后抓住数字间或新数、原数之间的关系找等量关系列方程(其中a、b、c均为整数,且1≤a≤9, 0≤b≤9, 0≤c≤9) (2) 数字问题中一些表示:两个连续整数之间的关系,较大的比较小的大1;偶数用2n表示,连续的偶数用2n+2或2n—2表示;奇数用2n+1或2n—1表示. 例7.一个两位数,十位上的数字与个位上数字和是8,将十位上数字与个位上数字对调,得到新数比原数的2倍多l0.求原来的两位数. 数据的收集与整理 ※科学记数法:一般地,一个大于10的数可以表示成a×10n的形式,其中1≤a<10,n是正整数,这种记数方法叫做科学记数法。 ※统计图的特点: 折线统计图:能够清晰地反映同一事物在不同时期的变化情况。 条形统计图:能够清晰地反映每个项目的具体数目及之间的大小关系。 扇形统计图:能够清晰地表示各部分在总体中所占的百分比及各部分之间的大小关系 统计图对统计的作用: (1)可以清晰有效地表达数据。 (2)可以对数据进行分析。 (3)可以获得许多的信息。 (4)可以帮助人们作出合理的决策。 小学数学公式汇总 5 v( s. I! J8 k/ r& [一般运算规则  ! @  u" m4 R- |! P- F: b# B1、 每份数×份数=总数 总数÷每份数=份数 总数÷份数=每份数   2、 1倍数×倍数=几倍数 几倍数÷1倍数=倍数 几倍数÷倍数=1倍数    : p) o* z" D% v$ q$ P1 y1 E0 l3、 速度×时间=路程 路程÷速度=时间 路程÷时间=速度   : U! I; M7 z6 ?* y3 f1 R: K4、 单价×数量=总价 总价÷单价=数量 总价÷数量=单价   5、工作效率×工作时间=工作总量 工作总量÷工作效率=工作时间 工作总量÷工作时间=工作效率   6 M" I) d* x: O% D6、 加数+加数=和 和-一个加数=另一个加数   3 G) G% d0 X' }! a! l7、 被减数-减数=差 被减数-差=减数 差+减数=被减数   8、 因数×因数=积 积÷一个因数=另一个因数   ! G7 S! h6 W- f7 |9、 被除数÷除数=商 被除数÷商=除数 商×除数=被除数 应用题公式 和差问题的公式  (和+差)÷2=大数 (和-差)÷2=小数   2 i. Z1 {! f. I4 ?5 p8 o2 u2 m和倍问题的公式  , T1 ]9 H5 h' W  b' O和÷(倍数-1)=小数 小数×倍数=大数 (或者 和-小数=大数)   差倍问题的公式   差÷(倍数-1)=小数 小数×倍数=大数 (或 小数+差=大数)   植树问题的公式  % ?& u% c2 K' A( C4 y5 Z1、 非封闭线路上的植树问题主要可分为以下三种情形: ⑴如果在非封闭线路的两端都要植树,那么:  株数=段数+1=全长÷株距-1   全长=株距×(株数-1)  # L- o; ]! Y' Y/ @0 ]株距=全长÷(株数-1)   ⑵如果在非封闭线路的一端要植树,另一端不要植树,那么:    b. I- I! z) n) S0 U6 I3 S7 x株数=段数=全长÷株距  . z8 ^9 o3 p7 z8 \全长=株距×株数   株距=全长÷株数   # [% H! \5 ~2 T9 L. [6 E' S4 v⑶如果在非封闭线路的两端都不要植树,那么:   株数=段数-1=全长÷株距-1   全长=株距×(株数+1)  % ~' |& g1 h) W4 O6 ]株距=全长÷(株数+1)   / }2 s% @+ ?& F* }' R2 V/ F7 L( H2 封闭线路上的植树问题的数量关系如下   株数=段数=全长÷株距   全长=株距×株数   株距=全长÷株数   盈亏问题的公式  " B* L! ?: d: h$ Q9 w(盈+亏)÷两次分配量之差=参加分配的份数   (大盈-小盈)÷两次分配量之差=参加分配的份数   (大亏-小亏)÷两次分配量之差=参加分配的份数    相遇问题的公式   相遇路程=速度和×相遇时间   相遇时间=相遇路程÷速度和   速度和=相遇路程÷相遇时间   追及问题的公式   追及距离=速度差×追及时间   追及时间=追及距离÷速度差  * J( ~7 R1 V0 p, J速度差=追及距离÷追及时间    流水问题   顺流速度=静水速度+水流速度  # J: R' y/ A3 y5 L/ a逆流速度=静水速度-水流速度   静水速度=(顺流速度+逆流速度)÷2   水流速度=(顺流速度-逆流速度)÷2   浓度问题的公式  9 P4 U- r4 V4 T2 \溶质的重量+溶剂的重量=溶液的重量  + J, Y6 b4 W$ i& P1 ~3 m溶质的重量÷溶液的重量×100%=浓度  8 G7 M9 s: k# p: }2 ^9 d( a" ~* @( ]9 t溶液的重量×浓度=溶质的重量   溶质的重量÷浓度=溶液的重量   利润与折扣问题的公式  " F+ h/ I: @0 I利润=售出价-成本  / [+ K& G3 p# G  {/ H4 t利润率=利润÷成本×100%=(售出价÷成本-1)×100%   涨跌金额=本金×涨跌百分比   折扣=实际售价÷原售价×100%(折扣<1)   利息=本金×利率×时间   税后利息=本金×利率×时间×(1-20%) 1 B0 g" `7 f6 P. r 小学计算公式 1、 正方形: C=周长、 S=面积、 a=边长 周长=边长×4 C=4a  : J: f% z7 J, k, }9 k9 A4 a面积=边长×边长 S=a×a 2、 正方体: V=体积、 a=棱长  7 d1 ~* F7 a/ V) s表面积=棱长×棱长×6 S表=a×a×6  ( _, n; ]- P. ?" Y4 t体积=棱长×棱长×棱长 V=a×a×a   * ]/ ?) i* ~7 ^) S! n) M3、 长方形: C=周长、 S=面积、 a=边长  周长=(长+宽)×2 C=2(a+b)  面积=长×宽 S=ab   9 C4 A2 {5 l; V( b4、 长方体: V=体积、 s=面积、 a=长、 b=宽、 h=高   表面积=(长×宽+长×高+宽×高)×2 S=2(ab+ah+bh)  ; s: ]$ w" A4 v/ Y" j, |: ^体积=长×宽×高 V=abh   5、 三角形: s=面积、 a=底、 h=高   面积=底×高÷2 s=ah÷2  8 i; z" W+ [6 M7 M' c0 n( l三角形高=面积 ×2÷底 三角形底=面积 ×2÷高 6、 平行四边形: s=面积、 a=底、 h=高   面积=底×高 s=ah   7、 梯形: s=面积、 a=上底、 b=下底、 h=高  - A( k5 m$ i- t3 v面积=(上底+下底)×高÷2 s=(a+b)× h÷2   8 、圆形: S=面积、 C=周长、 ∏、d=直径、 r=半径  周长=直径×∏=2×∏×半径 C=d∏=2r∏面积=半径×半径×∏   $ _, p. c: v& F7 O4 U9、 圆柱体: v=体积、 h=高、 s=底面积 、r=底面半径、 c=底面周长 侧面积=底面周长×高 表面积=侧面积+底面积×2   体积=底面积×高 体积=侧面积÷2×半径 10、圆锥体: v=体积、 h=高、 s=底面积、 r=底面半径  & y  G  e( {7 ~4 w3 H" C* A体积=底面积×高÷3  
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传
相似文档                                   自信AI助手自信AI助手

当前位置:首页 > 包罗万象 > 大杂烩

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服