收藏 分销(赏)

南农植物营养学课件word版本.doc

上传人:仙人****88 文档编号:9492035 上传时间:2025-03-28 格式:DOC 页数:34 大小:127.50KB
下载 相关 举报
南农植物营养学课件word版本.doc_第1页
第1页 / 共34页
南农植物营养学课件word版本.doc_第2页
第2页 / 共34页
点击查看更多>>
资源描述
第一章:绪论 植物营养学—是研究植物对营养物质吸收、运输、转化和利用的规律及植物与外界环境之间营养物质和能量交换的科学。 植物营养学的主要研究方法 生物田间试验法 1.是植物营养学科中最基本的研究方法 2.试验条件最接近农业生产要求,能较客观地反映生产实际 3.所得结果对生产有很强的指导意义。 缺点:田间的自然条件有时很难控制,因此此法应与其它方法结合起来运用,不适合单因素试验等。 生物模拟试验法 运用特殊装置,给予特殊条件。 1.便于调节水、肥、气、热和光照等因素,有利于开展单因子的研究。 2.多用于进行条件田间条件下难以进行的探索性试验。 缺点:所得的结果往往带有一定的局限性,往往需要进一步在田间试验中验证,然后在用于生产。 种类:土培法, 沙培法,溶液培养法等 化学分析方法 (农业化学分析法) 是研究植物、土壤和肥料中营养物质含量、形态、分布与动态变化必要的手段。 是进行植物营养诊断所不可少的方法 在大多数情况,此法应与其他方法结合运用。但手续繁多。工作量大。近十几年来,有各种自动化测试仪器相继问世,从而克服这一缺点。 核 素 技 术 法(同位素示踪技术法) 利用放射性和稳定性同位素的示踪特性,揭示养分运动的规律 缩短试验进程,解决其它研究方法难以深入的问题 酶学诊断法 通过酶活性的变化了解植物体内的养分的丰缺状况 反映灵敏,能及时提供信息 专一性较差,尚需积累经验 植物对养分的吸收 第一节 养分进入根细胞的机理 2.1 Mechanism of nutrient entered root cell 第二节 影响养分吸收的因素 2.2 Factors affecting the nutrient uptake 第三节 地上部器官对养分的吸收 2.3 Foliar uptake of nutrients 主要内容 基本要求 植物根系对养分的吸收 掌握 植物叶部对养分的吸收 了解 影响植物吸收养分的外界环境条件 掌握 植物的营养特性 了解 植物的养分吸收—是指养分进入植物体内的过程。 泛义的吸收—指养分从外部介质进入植物体中的任何部分 确切的吸收—指养分通过细胞原生质膜进入细胞内的过程 植物吸收的养分形式: 离子或无机分子—为主, 有机形态的物质—少部分; 第一节 养分进入根细胞的机理 一、植物根系的结构特点 二、根细胞对养分离子吸收的特点 选择性吸收——植物赖以生存的基础。 三、根自由空间中养分离子的移动 质外体与共质体 养分离子在根中的移动过程 根自由空间:根部某些组织或细胞允许外部溶液中离子自由扩散进入的区域。基本上包括了细胞膜以外的全部空间,相当于质外体系统。 1、水分自由空间:根细胞壁的大孔隙,离子可随水分自由移动。 2、杜南自由空间:因细胞壁和质膜中果胶物质的羧基解离而带有非扩散负电荷的空间,离子移动通过交换与吸附的方式,不能自由扩散。 阳离子交换量(CEC):由根自由空间中的阳离子交换位点的数目决定,双子叶植物>单子叶植物 四、离子的跨膜运输 [生物膜的模型] (一)基本概念 化学势:驱动溶质跨膜运输的各种势能的总和,包括浓度梯度、水稳压、电场等。由于离子带有电荷,化学势的变化导致电势的变化,故膜内的化学势可用电势来衡量,也称电化学势(electrochemical potential)。植物细胞膜的电化学势差一般在-60mV至-240mV。 [膜内外电化学势的测定方法] 电化学势是区分主动运输与被动运输的重要指标。 被动吸收 主动吸收 Nernst方程:膜内外离子的浓度差可由电化学势差来平衡。 通过比较由方程计算出的和实际测定的膜内外离子浓度及膜的电化学势,可以确定某个离子是主动运输还是被动运输。[不同离子的跨膜运输方式] H+的跨膜运输是决定膜内外电化学势的重要因子![Why?] (二)膜转运蛋白(Transporter,transport protein) 为什么说膜上存在转运蛋白? 细胞膜上存在3种类型的转运蛋白: 离子通道(Ion channel): 膜上的选择性孔隙。由它调节的离子运输属被动扩散,速度快,主要用于水和离子,如,水通道、K+通道、Ca2+离子通道。 离子泵 (Pump):逆电化学势直接将分子或离子泵出膜内或膜外,与能量供应直接偶联。也称为初级主动运输。根据离子运输是否使膜内外产生净电荷而分为致电泵与电中性泵。 致电泵:离子的运输使膜内外产生净电荷,如H+泵,即H+-ATP酶,它通过催化ATP水解而产生H+,并将其泵出膜外。[致电泵驱动阳离子跨膜运输的假说模型] 电中性泵:离子的运输不使膜内外产生净电荷,如动物中的H+/K+-ATP酶。 植物中只有H+泵和Ca2+泵,泵出的方向为膜外。 载体(Carrier): 在膜的一侧与被转运分子或离子结合,再到另一侧释放。速度慢,运输物质的形式多样。如NO3-,H2PO4-等。 载体需要与质子泵配合才能进行离子的运输。首先由H+泵运输H+,使膜内外产生电化学势和H+梯度,产生推动力,由载体运输另一个离子跨膜进行逆(该离子)浓度的运输。这种运输方式也称为次级主动运输。 次级主动运输分为2种方式: 协同运输(Symport):主要是阴离子,如NO3-、H2PO4-、SO42-、及蔗糖等。 反向运输(Antiport):如主要是阳离子,如K+、Na+ [进一步图示] [植物细胞膜上的各种转运蛋白] 五、养分吸收的动力学曲线 为什么要研究养分吸收动力学曲线? 养分吸收动力学曲线的特征 养分吸收动力学曲线的参数 质外体(Apoplast): 指细胞原生质膜以外的空间,包括细胞壁、细胞间隙和木质部导管。 共质体(Symplast) 由穿过细胞壁的胞间连丝把细胞相连,构成一个相互联系的原生质的整体(不包括液泡)。 胞间连丝——相邻细胞之间的原生质丝,是细胞之间物质运输的主要通道。 根自由空间:由水分自由空间和杜南自由空间组成。 细胞膜上的3种转运蛋白:通道(channel)、载体(carrier)、泵(pump) 养分吸收动力学曲线的特征 在较宽的养分浓度范围内,溶质的跨膜运输既有主动运输,也有被动运输。 通常在低浓度下为主动运输,有饱合点;在高浓度下为被动运输,无饱合点,如蔗糖的吸收动力学曲线。 在低、高浓度下,膜上的转运蛋白都可能参与养分运输的调节,在低浓度下,养分运输受高亲合力转运蛋白的调控,有饱合点;在高浓度下,养分运输受低亲合力转运蛋白的调控,有或者没有饱合点,如钾离子的吸收动力学曲线。在养分吸收动力学曲线上表现为双相曲线。 植物吸收养分的部位: 矿质养分—根为主,叶也可以 根部营养 气态养分—叶为主,根也可以 叶面营养(根外营养) 第二节 影响养分吸收的因素 一、介质中养分的浓度二、环境条件:温度: 6-38ºC 光照: 气孔开闭,光合作用 水分: 通气状况: 土壤pH 三、离子理化性状 四、根部碳水化合物供应 五、离子间的相互作用 六、作物生育阶段 一、介质中养分的浓度 不同离子的吸收动力学曲线不同 短期中断养分供应促进植物对该养分的吸收 持续供应养分使养分吸收速率下降 植物体内存在对养分吸收的负反馈机制,其中可能涉及信号反应。 二、环境条件 温度:6-38ºC 光照:气孔开闭,光合作用 水分: 通气状况: 土壤pH 三、离子理化性状 离子半径:与吸收速率呈负相关,但受膜转运蛋白对离子的亲合力的影响。 离子化合价数:化合价数越高,吸收速率越低。 四、根部碳水化合物供应 五、离子间的相互作用 拮抗作用(Ioncompetition):溶液中某一离子的存在能抑制另一离子的吸收。 协助作用(Ionsynergism):溶液中某一离子的存在有利于根系对另一离子的吸收。 六、作物生育阶段 作物吸收养分的一般规律是:生长初期吸收的数量、强度都较低,随着时间的推移,对营养物质的吸收量逐渐增加,到成熟期,又趋于减少。 全生育期作物对养分的吸收曲线:S形 单位根长的养分吸收速率:以幼苗期最高 营养临界期:一般在苗期和生殖器官分化初期。 养分最大效率期:一般在植物营养生长将停止,转入生殖生长的时间,此时植物生长最快,对的养分的需求最高。 从根尖向根茎基部分为根冠、分生区、伸长区和成熟区(根毛区)和老熟区五个部分。 从根的横切面从外向根内可分为表皮、(外)皮层、内皮层和中柱 研究表明,在低浓度范围内,离子的吸收率随介质养分浓度的提高而上升,但上升速度较慢,在高浓度范围内,离子吸收的选择性较低,而陪伴离子及蒸腾速率对离子的吸收速率影响较大。 短期中断养分供应促进植物对该养分的吸收:植物对养分有反馈调节能力。中断某仪养分的供应,往往会促进植物对这一养分的吸收。在缺磷一段时期后再供磷会导致地上部含磷量大大增加,甚至引起磷中毒。 持续供应养分使养分吸收速率下降 植物体内存在对养分吸收的负反馈机制, 根部离子吸收的反馈调节模型:植物能够“感知”体内的养分状态,并通过某种信号系统反馈调节养分的吸收。 光照对根系吸收养分的影响: 1、影响光合作用,进而影响根系的物质供应和能量供应。 2、通过调节气孔开闭而影响蒸腾作用,进而影响养分随蒸腾流的运输,反馈养分吸收。 土壤通气状况主要从三个方面影响植物对养分的吸收: 一是根系的呼吸作用; 二是有毒物质的产生; 三是土壤养分的形态和有效性。 良好的通气环境,能使根部供氧状况良好,并能使呼吸产生的CO2从根际散失。这一过程对根系正常发育、根的有氧代谢以及离子的吸收都有十分重要的意义。 pH值对植物根系吸收离子的影响:影响植物根系吸收和土壤养分的有效性。 偏酸性:吸收阴离子>阳离子 ;偏碱性:吸收阳离子>阴离子 1、通过影响细胞膜的电化学势。 在pH<5条件下,根系吸收阳离子明显受到抑制。 2、H+置换细胞膜中的Ca2+离子,破坏(增加)膜的透性,引起离子外渗。 3、通过与K+、Ca2+、Mg2+等阳离子的竞争。 4、影响土壤养分的有效性 吸收同价离子的速率与离子半径之间的关系通常呈负相关。 不带电荷的分子<一价的阴、阳离子<二价的阴、阳离子<三价的阴、阳离子。 相反,吸收速率常常以此顺序递减。水化离子的直径随化合价的增加而加大,这也是影响该顺序的另一因素。 离子间的拮抗作用: 阳离子间:如K+、Rb+、Cs+、NH4+间;Ca2+、Sr2+、Ba2+间 阴离子间:如NO3-与 H2PO4-, NO3-与Cl-间 1、离子水合半径相似,在载体蛋白上竞争同一结合位点。 如K+、Rb+、Cs+、NH4+的水合半径均为0.5nm左右。 2、离子对电荷的竞争—离子吸收总量的平衡。 如下表中,提高Mg2+的浓度,使向日葵中Ca2+的含量下降。 离子间的协助作用: 协助作用主要表现在阴离子促进阳离子的吸收。原因可能与植物体内的阴、阳离子平衡有关。 Ca2+具有稳定细胞膜结构的功能,因而有助于质膜的选择性吸收,称“维茨效应”。这种效应对于盐害条件下,K+/Na+的选择性具有重要意义。 植物营养临界期是指营养元素缺少或营养元素之间比例不平衡,对植物生长发育起着显著不良影响的那段时期。此时植物对养分需要量并不大,但要求很迫切。如果缺乏此种营养元素,就会明显抑制植物正常的生长。 第三节 地上部分器官对养分的吸收 气孔的开闭:与光及钾离子有关 第三节 地上部分器官对养分的吸收 一、植物叶片的结构和组成 叶的结构 气孔的开闭:与光及钾离子有关 二、叶片对气态养分的吸收 植物可以通过气孔吸收SO2、NH3、CO2等养分,进而促进植物生长。但另一方面,高浓度的工业废气也能由气孔进入叶片,造成毒害作用。 三、叶片对矿质养分的吸收 叶表皮的细胞外壁:由蜡质层、角质、角质层、初生壁构成。 叶面吸收不同养分的能力及养分在叶内的移动性 四、叶片营养的特点及应用 优点:(1)直接供给养分,避免土壤对养分的固定;(2)吸收快;(3)节省肥料 缺点: (1)费工;(2)施用效果易受气候条件等因素的影响 什么情况下使用? 什么条件下可以采用根外施肥措施? 1、基肥不足,作物有严重脱肥现象。 2、作物根系受到伤害。 3、遇自然灾害,需要迅速恢复作物的正常生长。 4、深根作物(如果树)用传统施肥方法不宜收效。 5、需要矫正某种养分缺乏症。 6、植株密度太大,已无法土壤施肥。 五、影响根外营养的因素 养分种类 养分浓度 叶片对养分的吸附能力 叶片类型 气象条件 可移动:尿素态\氮\钠\钾\磷\氯\硫\ 部分移动:锌\铜\锰\铁\钼\硼\ 不能移动:镁\钙 第三章 养分的运输和分配 植物吸收养分的去向: 1.在原细胞被同化,参与代谢或物质形成,或积累在液泡中成为贮存物质 2.转移到根部相邻的细胞——短距离运输 Short distance transport 3.通过输导组织转移到地上部各器官——长距离运输 Long distance transport或运转Translocation 4.随分泌物一道排回介质中 第一节 养分的短距离运输 第二节 养分的长距离运输 第三节 植物体内养分的内循环 第四节 养分的再利用 第一节 养分的短距离运输 一、概念 短距离运输:根外介质中的养分从根表皮细胞进入根内经皮层组织到达中柱的迁移过程。也称横向运输。包括共质体途径、质外体途径和膜运输。[胞间连丝的结构]plasmodesma 决定养分通过共质体途径还是质外体途径运输的因素 一、养分在细胞水平的运输 离子的分隔作用Ion Compartmentation 细胞被生物膜分隔成许多分室,每个室内进行着不同的生理生化过程。在代谢过程中室与室间存在着物质和能量的交换或运输,其中矿质养分在室间运输更为普遍。养分根据细胞生理生化需要而运输分配至不同室内的现象称为分隔作用。由于矿质养分多以离子形态存在于细胞内,因此通常称为Ion compartmentation。 小范围内 细胞器之间 大范围内 细胞质和液泡之间 目前还停留在大范围内。 二、养分在组织水平的运输 离子从根表到中柱的径向运输 Radial transport 离子进入根表后经过外皮层、皮层、内皮层、中柱薄壁细胞等组织后才能进入木质部导管向上运输。由质外体运输和共质体运输和膜运输组成。 膜运输 离子的径向运输过程中生物膜调节质外体和共质体之间的水分和养分平衡。当离子释放到木质部后,渗透势和水势降低,造成根压升高。由于生物膜对水分的渗透力远大于离子,根压升高导致净水流从外界溶液进入根内。根压对离子释放进入木质部的过程影响较大,此外,由于凯氏带将中柱内的质外体空间完全密闭,根压又可驱使水分及其溶质向地上部运输。如吐水、伤流等都是由根压造成。 养分通过共质体途径还是质外体途径运输,主要由以下因素决定: 1、养分种类 以主动吸收方式吸收的养分(如NO3-、K+、H2PO4-)以及分子态被吸收的养分(如H3BO3、H4SiO4)以共质体运输途径为主;而以被动跨膜运输为主的养分(如Ca2+)则以质外体途径为主。 2、养分浓度 当介质中养分的浓度较低,向根的供应速率小于根表皮细胞的吸收速率时,则养分主要直接被表皮细胞所吸收,进入共质体途径(如磷和钾)。 3、根毛密度 根毛所吸收的养分直接进入共质体。根毛越多,共质体途径越重要。 4、胞间连丝 胞间连丝是共质体系统连接相临细胞的运输桥梁,其数量大小决定着共质体的运输潜力。根毛细胞的胞间连丝数量较多。 5、菌根侵染 VA菌根根外菌丝从土壤中吸收的养分通过菌丝直接运输到皮层细胞内,而不需经过质外体空间。 第二节 养分的长距离运输 一、木质部运输(自下向上运输) 1动力 根压:当离子进入木质部导管后,增加了导管汁液的离子浓度,使水势下降,引起导管周围的水分在水势差的作用下扩散进入导管从而产生一种使导管汁液向上移动的压力,即根压。根据根压原理,可以收集木质部伤流液,用以研究木质部汁液的离子组成。 蒸腾作用:蒸腾作用的拉力要高于根压,但有昼夜节律。蒸腾对养分在木质部的运输的作用大小因植物生育阶段、元素种类、离子浓度、植物器官而不同。 蒸腾对溶质在木质部运输速率的影响大小,因不同离子而异。 1、以质外体途径运输的离子,受蒸腾作用的影响较大。 2、以分子态运输的离子,其木质部运输也受蒸腾作用的强烈影响。 1、不同器官的蒸腾强度不同,影响到离子向该器官的积累。 2、果实蒸腾量较低,对于只能依靠木质部运输的元素,如钙,容易产生生理缺素症。 3、甚至在同一片叶中,因不同部位的蒸腾量差异,可能导致养分积累的不均匀。叶尖的蒸腾量最大,在高浓度养分供应条件下,可能会导致毒害症状。 2 机理、运输特点 交换吸附:木质部导管有很多带负电荷的阴离子基团,它们与导管汁液中的阳离子结合,将其吸附在管壁上。所吸附的离子又可被其它阳离子交换下来,继续随汁液向上移动,这种吸附称为交换吸附。其强弱取决于离子种类、浓度、活度、竞争离子、导管电荷密度等因素。 再吸收:溶质在木质部导管运输的过程中,部分离子可被导管周围薄壁细胞吸收,从而减少了溶质以达茎叶的数量,这种现象称为再吸收。再吸收影响离子向地上部所需器官的转运,可能导致养分供应不足。 释放: 木质部周围的薄壁细胞将从木质部中吸收的离子再释放回导管中。 二、韧皮部运输(双向运输) 1、韧皮部的结构:韧皮部由筛管、伴胞和薄壁细胞组成。 2、韧皮部汁液的组成 与木质部相比,韧皮部汁液的组成有以下特点: pH值较高。原因可能是HCO3-和K+等阳离子含量较高。 干物质和有机化合物含量高。 某些矿质元素,如 B、Ca的含量极低。 3、韧皮部中矿质养分的移动 养分在地上/根间的循环:一些养分从根运输到地上部以后,其中一部分通过韧皮部回流到根中,这部分养分如果不被利用,还可以再转入木质部,构成养分的循环。 养分的再利用:运到某一器官被利用的养分,在一定条件下可以被释放出来,再转入韧皮部,运输到新的器官被重新利用。 养分的移动性:不同养分在韧皮部中的移动性有很大差异,这与植株养分缺乏症的表现部位有密切联系。移动性小的元素往往再利用程度低,养分缺乏症主要出现在幼叶、茎尖、果实等部位。 4、同化物在韧皮部中的装载过程 蔗糖向韧皮部的装载是受载体调节的主动运输过程 5、同化物在韧皮部中的运输-压力流学说 6、同化物从韧皮部的卸载 不同植物的卸载方式有差异 7、源与库的概念 源:提供同化物的器官。如成熟的叶片。 库:接收利用同化物的器官。如籽粒、贮藏器官等。 叶片经历从库到源的转变过程。 木质部和韧皮部之间的养分转移 第三节 植物体内养分的内循环 Retranslocation and cycling of nutrients 一、含义 指养分通过木质部从根部运输到地上部后,相当一部分养分还会再迁移到轫皮部,并通过轫皮部从地上部回运根部,部分在迁移的养分,还会通过木质部自根运回地上部的循环流动。 对于保持养分在体内的持续、稳定供应,以及根部某些养分的不均匀分布起一定的补偿作用 二、过程 除Ca2+、Mn2+外,82%~100%的离子从木质部释放到地上部后,被再迁移到轫皮部,其中相当比例的K+ 、Mg2+进入体内的循环过程。 可以木质部汁液中NO3-含量的高低判断植物还原NO3-的部位 四、养分循环的作用 --调控根系吸收养分的速率主要通过“反馈控制”来实现--地上部养分在轫皮部中运到根部的数量是反映地上部营养状况的一种信号,当 运输养分的数量 > 某一临界值:营养状况良好 ▼ 吸收运输养分的数量 < 某一临界值:养分缺乏 ▲ 吸收 第四节 养分的再利用 Remobilization of mineral nutrient 植物某一器官或部位中的矿质养分可通过轫皮部运往其它器官或部位而被再度利用的现象。 实质:养分重新分配 养分再利用的过程 第一步:在细胞中被激活 养分离子在细胞中被转化为可运输的形态。ex. protein to aa, OP to IP。由需要养分的新器官发出“养分饥饿”的信号,通过某种途径(如激素传递)传到老器官,引起该细胞中运输系统被激活而启动(可能通过“第二信使”实现),将养分转移到细胞外,准备进行长距离运输。 第二步:养分进入轫皮部 被激活的养分离子转移到细胞外的质外体后,再经过原生质膜“装”入轫皮部筛管中,进行长距离运输,到达茎后,养分可通过转移细胞进入木质部向上运输。 第三步:进入新器官 养分通过轫皮部或木质部运至靠近新器官的部位,再经过跨质膜的主动运输过程“卸”入需要养分的新器官细胞内。 经历:共质体(老器官细胞内激活)→ 质外体(装入轫皮部之前)→共质体(轫皮部)→质外体(卸入新器官之前)→共质体(新器官细胞内) 离子的再运转能力因元素而异,只有移动能力强的养分元素才能被再利用。 二、养分再利用与生殖生长 植物进入生殖生长阶段,根的活力减弱,吸收养分的功能衰退。此时,植物体内养分总量增加不多,各器官中养分含量主要靠体内再分配进行调节。 在农业生产中,养分的再利用程度是影响经济产量和养分利用效率的重要因素。如果能通过各种措施提高植物体内养分的再利用效率,就能使有限的养分物质发挥其更大的增产作用。 第四章 土壤养分的生物有效性 第一节 土壤养分的化学有效性 第二节 土壤养分的空间有效性 第三节 植物根系的生长与养分有效性 第四节 植物根际养分的有效性 第一节 土壤养分的化学有效性 土壤中的生物有效养分具有两个基本特点:一是以矿质养分为主;二是位置接近植物根表或短期内可以迁移到根表的有效养分。 化学有效养分是指土壤中存在的矿质态养分,主要包括:某些气态养分、简单分子态养分、可溶性的离子态养分、交换吸附性养分、易分解性养分 养分的强度因素(I):是指土壤溶液中养分的浓度。强度因素是土壤养分内供应的主要因子。 养分的容量因素(Q):是指土壤中有效养分的数量,也就是不断补充强度因子的库容量。 容量因素对强度因素的补充不仅取决于养分库容量的大小,还决定于储存养分释放的难易程度。这要受到土壤、水分、温度、通气等土壤条件以及植物根系生长的影响。 缓冲因素(缓冲容量):表示土壤保持一定养分强度的能力。它关系着养分供应的速度,反映强度随数量变化的关系。可以用△Q/△I 的比率来表示,比率越大,土壤养分的缓冲力就越强。 应用强度/容量关系描述土壤养分有效性,可以从养分转化的动态过程来考虑养分的有效性。 第二节 土壤养分的空间有效性 养分位置与有效性 土壤中有效养分只有达到根系表面才能为植物吸收,成为实际有效养分。对于整个土体来说,植物根系仅占据极少部分空间,平均根系土壤容积百分数大约为3%。因而。养分的迁移对提高土壤养分的空间有效性十分重要。 二、养分向根表的迁移 土壤中养分到达根表有两种机理:其一是根对土壤养分的主动截获;其二是在植物生长与代谢活动(如蒸腾、吸收等)的影响下,土壤养分向根表的迁移。 截获是指根直接从所接触的土壤中获取养分而不经过运输。截获所得的养分实际是根系所占据土壤容积中的养分,它主要决定于根系容积大小和土壤中有效养分的浓度。 土壤养分向根表的迁移有两种方式:即质流和扩散。 (一)质流Mass flow 植物的蒸腾作用和根系吸水造成根表土壤与土体之间出现明显水势差,土壤溶液中的养分随水流向根表迁移。其特点是运输养分数量多,养分迁移的距离长。养分通过质流到达根部的数量取决于植物的蒸腾率和土壤溶液中该养分的浓度。 (二)扩散Diffusion 当根系截获和质流作用不能向植物提供足够的养分时,根系不断的吸收可使根表有效养分的浓度明显降低,并在根表垂直方向上出现养分浓度梯度差,从而引起土壤养分顺浓度梯度向根表运输。土壤养分的扩散作用具有速度慢距离短的特点。扩散速率主要取决于扩散系数。 不同迁移方式对植物养分供应的贡献 在植物养分吸收总量中,通过根系截获的数量很少。大多数情况下,质流和扩散是植物根系获取养分的主要途径。对于不同各种营养元素来说,不同供应方式的贡献是各不相同的,钙、镁和氮(NO3-)主要靠质流供应,而H2PO4-、K+、NH4+等扩散是主要的迁移方式。在相同蒸腾条件下,土壤溶液中浓度高的元素,质流供应的量就大。 影响养分移动的因素 养分向根表的迁移受到根系吸收和土壤供应两方面的影响。 (一)土壤湿度 增加土壤湿度,可使土壤表面水膜加厚,一方面这能增加根表与土粒间的接触吸收;另一方面又可减少养分扩散的曲径,从而提高养分扩散速率。 施肥可增加土壤溶液中养分的浓度,直接增加质流和截获的供应量。同时,施肥加大了土体与根表间的养分浓度差,也增加了养分扩散迁移量。 (三)养分的吸附与固定 吸附与固定使磷、钾、锌、锰铁等营养元素的移动性变小。向土壤直接供应有机螯合态肥料,或者施用有机肥,可减少养分的吸附和固定。 第三节 植物根系的生长与养分有效性 1、植物根的特性 形态结构 直根系 须根系 根毛 不同作物、同一作物的不同品种,根毛的长度或数量存在差异。 对那些在土壤溶液中浓度低、移动性小、以扩散作用向根表移动的元素,如磷、钾、锌,根毛的作用更重要。 根系深度 较深的根系有助于利用土壤深层养分,是植物适应多种养分缺乏的重要途径 在养分缺乏、干旱等条件下,较深的根系是非常重要 根系密度 单位土壤体积中根的总长度 2、影响根系生长的环境 土壤物理因素:土壤容重与根系生长 土壤容重增加意味着紧实度变大,大孔隙减少,根的伸长速度降低,平均直径减少。主根伸长受阻会激发侧根的发展,形成密集的表层根系。 通常根系生长最适温度范围在20-250C之间,土壤温度过高或过低都可能抑制根系的生长。 土壤养分状况: 养分局部供应与根系生长 养分胁迫与根系生长 在土壤中,养分的分布是极不均匀的。植物根系的生长可以“感受”某些养分的局部供应,并产生加速生长反应!其机理尚不十分清楚。 增加养分供应可促进根系生长。一般根系集中生长在养分浓度较高的地方。适当深施肥料有利于根系下扎和吸收下层土壤水分和养分。在局部根区提高养分浓度对根系形态有明显影响,其中以供应硝酸盐最为突出。 矿质养分的供应对根毛的长度和密度也有很大影响。土壤硝酸盐和土壤磷的浓度与根毛数目及根毛长度之间呈负相关关系;而铵盐的存在则增加根毛的密度与长度。 土壤pH值: 在酸性土壤中,铝和重金属元素的浓度很高,对根尖产生极强的毒害作用。盐碱土 根系生长对钙的需要量因作物种类而异,也与环境的pH和Al3+的浓度有关。土壤溶液中钙和阳离子总量的摩尔比,平均为0.15。在酸性土壤中,当这一比例<0.15时,根系生长便受到抑制。在酸性土壤上重金属以及有机络合物对根系也有抑制作用,不同元素的毒害程度为: Cu>Ni>Cd>Zn>Al>Fe。高pH条件下,根系易受的NH4+毒害作用。 有机物: 土壤中有机物分解过程中产生的化感物质、乙烯等对根系生长有抑制作用。 大豆重迎茬栽培条件下,土壤有机物分解产生的化感物质严重抑制大豆根系生长,进而导致产量下降。 第四节 植物根际养分的有效性 根际:是指受植物根系活动的影响,在物理、化学和生物学性质上不同于土体的那部分微域土区。根际的范围很小,一般在离根轴表面数毫米之内。根际的许多的化学条件和生物化学过程不同于原土体。其中最明显的就是根际pH、氧化还原电位和微生物活性的变化。 根际效应:在根际中,植物根系不仅影响介质土壤中的无机养分的溶解度,也影响土壤生物的活性,从而构成一个 “根际效应”。“根际效应”反过来又强烈地影响着植物对养分的吸收。 1、根际养分 累积:当土壤溶液中养分浓度高,植物蒸腾量大,根对水分的吸收速率高于对养分的吸收速率,导致养分在根际累积。 亏缺:当土壤养分浓度低,植物蒸腾强度小,根系吸收土壤溶液中养分的速率大于吸收水分的速率时,根际即出现养分亏缺区。 持平:………… 根际养分浓度分布的影响因素::: 1、营养元素种类 Ca2+,NO3-,SO42-,Mg2+等养分在土壤溶液中含量较高,在根际一般呈累积分布;H2PO4-,NH4+,K+和一些微量元素Fe2+,Mn2+,Zn2+等养分在土壤溶液中的浓度低,由于植物吸收,根际出现亏缺分布。养分在根际亏缺的强度、范围与该种养分的扩散系数、迁移速率等特性密切相关。 2、土壤缓冲性能 粘粒含量少的土壤,对养分的吸附力弱,离子迁移速率快,养分亏缺范围大。反则反之。 3、植物营养特性 根系吸收养分能力的强弱能影响根际养分浓度的分布,不同植物之间在根系容积,养分吸收速率,最低吸收浓度,蒸腾强度等方面都有差异。因此,同一养分在不同种类植物的根际,其浓度分布是不同的。棉花 VS 小麦 K 根毛的形态、根毛密度和长度对若移动性养分(如磷)有重要影响。 根系吸收养分能力的强弱影响根际养分浓度的分布。 2、根际pH值 2.1根际pH变化的原因: 根系及根际微生物的呼吸 根分泌质子及有机酸 阴阳离子吸收不平衡 2.2影响根际pH变化的因素: 氮素形态 共生固氮作用[根瘤] 养分胁迫 根际微生物 2.3根际pH值变化与养分有效性:提高难溶性养分的有效性 3、根际Eh 小麦、玉米等旱地作物:根际Eh一般降低50-100mV。 水稻:根际Eh增高上[根的Eh变化图]。 4、根分泌物 4.1概念:植物生长过程中根向生长基质中释放的有机物质的总称。 4.2根分泌物的组成: 渗出物:是由根细胞被动扩散出的一类低分子化合物。 分泌物:是由根代谢过程中细胞主动释放的。包括低分子量或高分子量的化合物。 粘胶质:由根冠细胞、表皮细胞、根毛分泌的胶状物。 脱落物:包括脱落的根冠细胞、根毛与细胞碎片。 从化学组成来看,根系分泌物有两大部分:一是大分子量化合物,主要有多糖、糠醛酸和蛋白质等;二是小分子量、易扩散的化合物,主要有氨基酸、寡糖和有机酸等。 4.3根系分泌物的影响因素: 养分胁迫 根际微生物 植物种类 4.4根分泌物对养分的活化作用:还原作用 配合作用 5、根际微生物 根际的微生物约为土体的10-100倍!它们中的许多可以分泌有机酸、氨基酸、酶等物质,活化根际难溶性养分,促进植物吸收。如菌根真菌、解磷细菌、解钾细菌等。 根际微生物对土壤养分有效性的影响 1、改变根系形态,增加养分吸收面积 活化与竞争根际养分在根际数量可观的微生物一方面通过分泌有机酸、酶、氨基酸等活化根际土壤中难溶性无机态或有机态养分,提高其有效性;另一方面,高密度的微生物又要利用根际的养分,与植物竞争有效养分,并可导致养分的耗竭与亏缺。 2、改变氧化还原条件根际大量微生物活动对氧的消耗导致根际氧分压降低。这样会增加根际NO3-N的反硝化损失。在淹水土壤上,使水稻根系氧化力下降,导致还原性铁、锰的奢侈吸收,甚至亚铁中毒。 3、根际微生物还能影响根际的Eh值,影响根际养分的转化和根的正常生长。 菌根真菌(Mycorrhizae) 菌根是高等植物根系与真菌形成的共生体,分布很广,分为内生菌根菌和外生菌根菌。内生菌根中最普通的是泡囊-丛枝菌根菌(VAM),它可以感染80%以上的植物。外生菌根菌主要感染树木。受感染之后的植物根称为菌根。 菌根的形成可以有效地促进植物对土壤中移动性小的元素(如P, Zn, Cu)的吸收,以改善植物磷营养的作用最为突出。 第五章 氮素营养与氮肥 1.植物的氮素营养——掌握 2.土壤中的氮素及其转化——结合土壤学掌握转化 3.氮肥的种类、性质与施用——掌握 4.氮肥的合理分配和施用——掌握 第一节 植物的氮素营养 第二节 土壤中的氮 第三节 氮肥的种类与施用 第一节 植物氮营养 一、植物体内氮的含量和分布>>> 二、氮的营养作用>>> 三、氮的吸收>>> 四、 氮的同化>>> 五、NO3-和NH4+营养作用的比较>>> 六、NO3-吸收与还原的调节>>> 七、 植物缺氮症状>>> 八 、供氮过多的危害>>> 在所有必需营养元素中,氮是限制植物生长和形成产量的首要因素,对产品品质也有多方面影响。一般植物含氮量约占作物体干重的0.3-5%,而含量的多少与作物种类、器官、发育阶段有关。 氮是植物体内许多重要有机化合物的组分,例如蛋白质、核酸、叶绿素、酶、维生素、生物碱和一些激素等,这些物质涉及遗传信息传递、细胞器建成、光合作用、呼吸作用等几乎所有的生化反应。 在细胞内硝酸盐具有渗透调节作用。 硝酸盐还可能具有信号作用 一、植物体内氮的含量和分布 一般植物含氮量约占植物体干物重的0.3%-5%, 含量的多少与植物种类、器官、发育阶段有关 ,且受氮肥使用量影响。种类:大豆>玉米>小麦>水稻器官:叶片>子粒>茎秆>苞叶发育:同一作物的不同生育时期,含氮量也不相同。 营养生长期,N素大部分在幼嫩器官中,茎叶中含氮量较高。生殖生长期时,茎叶各部分的N素则向贮存器官。成熟期,作物体内含N量的70%左右转入并贮存在生殖器官或贮存器官中去。 氮肥使用:含氮量和分布受施氮水平影响,施N量增加时,器官中N含量上升。通常营养器官的含量变化大,生殖器官则变动小,但生长后期施用氮肥,则表现为生殖器官中的含氮量明显上升 。 二、氮的营养功能 氮是植物体内许多重要有机化合物的组分,也是遗传物质的基础。(一)蛋白质的重要组分 蛋白质中平均含氮16%-18%;(二)核酸和核蛋白质的成分 核酸中含15%-16%的氮,没有核酸就不能合成蛋白质;(三)叶绿素的组分元素 叶绿素a C55H72O5N4Mg,叶绿素b C55H70O6N4Mg 缺氮时抑制叶绿素的形成; (四)许多酶的组分(酶本身就是蛋白质);(五) 氮还是一些维生素的组分,而生物碱和植物激素也都含有氮。 总之,氮对植物生命活动以及作物产量和品质均有极其重要的作用。合理施用氮肥是获得作物高产、优质的有效措施。 氮的吸收 1.NO3-的吸收 植物根细胞吸收NO3-是逆电化学势梯度进行的,首先需要由细胞膜上的质子泵(H+-ATP酶)水解ATP,并向膜外释放H+,使膜电化学势下降,产生驱动力,最后由硝酸盐转运蛋白(载体)2H+:1NO3-共运的方式,将NO3-运入细胞膜内。是一个主动吸收过程。 影响NO3--N吸收的主要因素:光照 通过影响植物体内的代谢,影响根系对NO3-N的吸收 介质的pH pH值升高,NO3-N的吸收减少 OH-与NO3-有竞争作用 细胞内的pH值上升 NO3- + 8H+ +8e- NH3 + H2O + OH- 2.NH4+的吸收 植物对NH4-N的吸收主要为被动吸收。 植物可能以两种方式吸收NH4+。一是NH4+在质膜上
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传
相似文档                                   自信AI助手自信AI助手

当前位置:首页 > 教育专区 > 其他

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服