资源描述
························装·······················订························密························封························线·························
大学:_____________ 年级:____________ 专业:____________________ 姓名:_______________ 学号:________________
························阅·······················卷························密························封························线·························
《概率统计》试卷(C)答案
(110分钟)
参考答案
一、求下列问题的概率(第一、二小题各8分,第三、四小题各12分,
共40分)
1、从由数字1,2,3,4,5组成的所有没有重复数字的5位数中随机抽取一个,求这个数大于23000且小于43000的概率.
解:所组成的没有重复数字的5位数共有 (种),………………(3分)
其中大于23145且小于43521的共有 (种),……(6分)
所求概率为 .…………………………………………………(8分)
2、从装有4个红球,3个白球的袋中随机取出3个球,求其中恰有2个红球1个白球的概率.
解:所有的取法共有 (种),………………………………(3分)
恰好取出2个红球1个白球的取法共有 (种),……………(6分)
所求概率为 . ………………………………………………………(8分)
3、一批产品的次品率是0.1%,(1)用二项分布计算1000件这种产品种次品数大于2的概率;(2)用普阿松定理计算1000件这种产品种次品数大于2的概率.
解:(1)所求概率为
;……………………(6分)
(2)所求概率
.……………………………(12分)
4、某地区暴雨天气的概率为0.4%,某气象台对该地区暴雨天气的准确预报率为95%,但也会有2.5%的非暴雨天气被误报为暴雨;
(1)(6分)随机抽取该气象台对该地区的一次预报,求预报为暴雨天气的概率;
(2)(6分)该气象台对该地区的一次预报为暴雨,求该地区真正为暴雨天气的概率.
解:(1)由全概率公式,所求概率为
;……………(6分)
(2)由条件概率公式,所求概率为
.……………………………………(12分)
二、(满分12分)
························装·······················订························密························封························线·························
大学:_____________ 年级:____________ 专业:____________________ 姓名:_______________ 学号:________________
························阅·······················卷························密························封························线·························
抛掷三次质地均匀的硬币,以X表示出现正面的次数,以Y表示正面出现次数与反面出现次数之差的绝对值.
(1)(6分) 求(X,Y)的联合分布;
(2)(6分) 求X与Y的边际分布列;讨论X与Y的独立性。
解:(1)
X
Y
0
1
2
3
1
0
3/8
3/8
0
3
1/8
0
0
1/8
……(6分)
(2)
X
0
1
2
3
PX(x)
1/8
3/8
3/8
1/8
Y
1
3
PY(y)
3/4
1/4
……(9分)
∵ P(X=0,Y=1)=0≠3/32=P(X=1)×P(Y=1)
∴ X与Y不独立. ………………………………………………………(12分)
三、(满分14分)
设随机变量X的概率密度函数为
(1)(4分) 求常数;
(2)(6分) 求X的分布函数;
(3)(4分) 计算
解:(1) ∵ ,…………………………(3分)
∴ ;……………………………………………………(4分)
(2) …………(10分)
(3) ……(14分)
四、(满分12分)
························装·······················订························密························封························线·························
大学:_____________ 年级:____________ 专业:____________________ 姓名:_______________ 学号:________________
························阅·······················卷························密························封························线·························
设随机变量X的概率密度为
求:(1)(6分) 求;
(2)(6分) 求的概率密度
解:(1) ,……(6分)
(2) ,
………………………………………(10分)
∴ ……………………………………(12分)
五、(满分12分)
设二维随机变量的概率密度为
求(1)(6分);
(2)(6分),的边缘密度函数.
解:(1) ;…(6分)
(2) , …………(9分)
, ……………(12分)
六、(满分10分)
························装·······················订························密························封························线·························
大学:_____________ 年级:____________ 专业:____________________ 姓名:_______________ 学号:________________
························阅·······················卷························密························封························线·························
若为常数,随机变量的密度函数
证明:对任意,都有.
证明:, ……………………(5分)
.…(10分)
(共8页) 第7页 (共8页) 第8页
展开阅读全文