收藏 分销(赏)

说题样题.doc

上传人:仙人****88 文档编号:9461922 上传时间:2025-03-27 格式:DOC 页数:4 大小:57KB
下载 相关 举报
说题样题.doc_第1页
第1页 / 共4页
说题样题.doc_第2页
第2页 / 共4页
点击查看更多>>
资源描述
书面说题答卷 题目:已知椭圆,直线l:,P是l上一点,射线OP交椭圆于点R,又点Q在OP上,且满足OQ·OP=OR2。当点P在l上移动时,求点Q的轨迹方程,并说明轨迹是什么曲线. 一、阐述题意 本题主要考查点为直线与椭圆之间的关系,且明确给定椭圆和直线的方程 直接绘制图像辅助求解;其次给出主动点与被动点之间的关系,寻求动点的轨迹方程并进一步指出所表示的曲线;对线段之间的乘积可以转化为相关向量之间的运算,但要注意符号及向量夹角即同向还是反向的问题;对轨迹问题中所涉及到的有关参数方程的基本运算提出更高的要求尤其是繁杂的消参运算;最终给出方程且对照方程阐述是怎样的曲线。 二、题目背景 圆锥曲线与直线的综合题它来源必修二及选修部分的内容,对理科参数方程的知识也提出要求,从圆锥曲线的标准方程到方程的性质及直线方程与曲线之间的静态与动态的关系。 三、 题目解答 根据轨迹方程可知该曲线为将对应的标准椭圆经过平移后得到的一般椭圆。 四、 总结提炼 思路点破:对圆锥曲线的标准方程和直线方程要有深入的理解,它们之间的位置关系如何,在本道题中直线与圆锥曲线联合组成方程组无解,在图像显示的时候为相离位置。第二点P为直线上的任意点即点P的坐标无范围限制,但点Q在线段OP上,也可体现出点Q受到一定的制约即横纵坐标的有界性,根据最终所求方程来看为一般椭圆方程。第三此类题在求解的开始阶段不易设出固定的坐标,常规是设出所求量Q点的坐标,然后寻求关于x,y之间的等量关系。第四本道题完全可以先设出直线OP的方程利用求点坐标的方法,但求出各点坐标之后再利用题目中提供的一个等量关系式:OQ·OP=OR2 得出含有唯一参数k的表达式即有关k的参数方程。第五对含参方程的理解和有效消参数的运算。 思想方法:在难度较大的寻求动点轨迹方程的探究中,我们有必要从特殊位置或临界位置入手(找出解决问题的突破口),其次要掌握一般的求解轨迹方程的方法,主要有定义法,相关点法,几何法。最易理解的为定义法,相关点法是常用的一种方法,它的求解最后一般以消参形式出现,而几何法一般是很难想到,一旦意识到用几何法,解题的速度和正确率都比较高。 注意点:在直线与曲线结合的综合题目中,主要是两个问题时刻困扰我们。一个是解题思路,而出现的情况就是易向不易做;另一个就是运算,尤其是直线方程与曲线方程联立后的方程转化为有关X(Y)的二次方程后,当然得注意二次方程是否有解直接影响直线与曲线的位置关系。在有解的情况下,一般我们避开直接求解方程的解,而是利用两根之和,两根之积去巧解有关长度问题,本题有关OP,OP,OR的长度运算巧妙地运用向量知识迅速得到转化。当然此类问题的运算不可避免的会出现高次问题,遵循越做越简的原则,可以采用整体代换的方式进行优化。 五、题目变式  已知曲线,直线l:,P是l上一点,射线OR交曲线于点R,OQ·OF=OR2 (F为焦点)。当点P在l上移动时,求点Q的轨迹方程,并说明轨迹是什么曲线.    六、教学设计 在整个的教学设计过程中,始终体现以学生为主体的教学理念。在学生对直线方程及圆锥曲线有了深入理解和感悟后,及时给予一定的设问和引导,将复杂性问题通过设置多个台阶,降低过程难度后,让不同层次的学生作出应有的回答,对领悟力和学习力强的学生提出更高的要求,除了会说之外还给予他们黑板板演的机会,让他们通过真正的做去感受自己的所想,而事实上做起来困难重重。黑板体现出不完美的过程,之后就请所有学生共同关注,留有一定的时间让他们相互之间进行沟通纠错,甚至是辩论,只有通过这样的实践或实验学生的记忆力才会得到保证,当然学生也乐在其中。老师此时应该关注弱势群体的学生,他们一般一言不发或者随意附和,敷衍了事。老师可以和他一起针对他所做的问题进行研讨,找出他所存在的问题,而不是闲着。所有教学环节应该重视讨论、交流和组内合作,重视每一个学生探究问题的习惯的培养和养成。尤其要考虑不同学生的个性差异和发展层次,使不同的学生都有发展,真正体现因材施教的原则。 此类题型老师讲解再多还不如让学生主动尝试,宁可在失败中总结经验也不应该坐享其成,学生的眼高手低一定会导致会而做不对做不全。让学生动手操作、学生在操作中加深对知识的应用,更有机会表达自己的想法,也学会听取别人的观点,加深了彼此之间的情谊等。学生在交流中相互启发,在不同观点、创造性思维火花的相互碰撞中,发现问题、探索问题、解决问题。 板书设计:(如图) 板书设计 思路点破: 总结提升: 知识点 注意点 详解过程: 一题多解思路点破 第 4 页 (共 4 页)
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传
相似文档                                   自信AI助手自信AI助手

当前位置:首页 > 教育专区 > 小学其他

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服