收藏 分销(赏)

方程(组)与不等式(组)知识点.doc

上传人:仙人****88 文档编号:9458113 上传时间:2025-03-27 格式:DOC 页数:2 大小:204.62KB 下载积分:10 金币
下载 相关 举报
方程(组)与不等式(组)知识点.doc_第1页
第1页 / 共2页
方程(组)与不等式(组)知识点.doc_第2页
第2页 / 共2页
本文档共2页,全文阅读请下载到手机保存,查看更方便
资源描述
中考复习三 方程(组)与不等式(组) 【一次方程及方程】 一、等式与方程的有关概念 1.等式及其性质 ⑴ 等式:用等号“=”来表示 关系的式子叫等式. ⑵ 性质:① 如果,那么 ; ② 如果,那么 ; 如果,那么 . 2. 方程、一元一次方程的概念 ⑴ 方程:含有未知数的 叫做方程;使方程左右两边值相等的 ,叫做方程 的解;求方程解的 叫做解方程. 方程的解与解方程不同. ⑵ 一元一次方程:在整式方程中,只含有 个未知数,并且未知数的次数是 ,系 数不等于0的方程叫做一元一次方程;它的一般形式为 . 3. 解一元一次方程的步骤: ①去 ;②去 ;③移 ;④合并 ;⑤系数化为1. 二、二元一次方程(组)及解法 1.二元一次方程:含有 未知数(元)并且未知数的次数是 的整式方程. 2. 二元一次方程组:由2个或2个以上的 组成的方程组叫二元一次方程组. 3.二元一次方程的解: 适合一个二元一次方程的 未知数的值叫做这个二元一次方程的一个解,一个二元一次方程有 个解. 4.二元一次方程组的解: 使二元一次方程组的 ,叫做二元一次方程组的解. 5. 解二元一次方程的方法步骤: 消元 转化 二元一次方程组 方程. 消元是解二元一次方程组的基本思路,方法有 消元和 消元法两种. 6.易错知识辨析: (1)解方程的基本思想就是应用等式的基本性质进行转化,要注意:①方程两边不能乘 以(或除以)含有未知数的整式,否则所得方程与原方程不同解;②去分母时,不要漏 乘没有分母的项;③解方程时一定要注意“移项”要变号. (2)二元一次方程有无数个解,它的解是一组未知数的值; (3)二元一次方程组的解是两个二元一次方程的公共解,是一对确定的数值; (4)利用加减法消元时,一定注意要各项系数的符号. 图9 1.(2009年,3分)如图9,两根铁棒直立于桶底水平的木桶中,在桶中 加入水后,一根露出水面的长度是它的,另一根露 出水面的长度是它的.两根铁棒长度之和为55 cm, 此时木桶中水的深度是 cm. 2.(2010年,2分)小悦买书需用48元钱,付款时恰好用了1元和5元的纸币共12张.设所用的1元纸币为x张,根据题意,下面所列方程正确的是 A. B. C. D. 【一元二次方程及其应用】 1.一元二次方程:在整式方程中,只含 个未知数,并且未知数的最高次数是 的方程叫做一元二次方程.一元二次方程的一般形式是 .其中 叫做二次项, 叫做一次项, 叫做常数项; 叫做二次项的系数, 叫做一次项的系数. 2. 一元二次方程的常用解法: (1)直接开平方法:形如或的一元二次方程,就可用 直接开平方的方法. (2)配方法:用配方法解一元二次方程的一般步骤是:①化二 次项系数为1,即方程两边同时除以二次项系数;②移项,使方程左边为二次项和一次项, 右边为常数项,③配方,即方程两边都加上一次项系数一半的平方,④化原方程为 的形式,⑤如果是非负数,即,就可以用直接开平方求出方程的解. 如果n<0,则原方程无解. (3)公式法:一元二次方程的求根公式是 . (4)因式分解法:因式分解法的一般步骤是:①将方程的右边化为 ;②将方程的左边化成两个一次因式的乘积;③令每个因式都等于0,得到两个一元一次方程,解这两个一元一次方程,它们的解就是原一元二次方程的解. 3. 一元二次方程根的判别式: 关于x的一元二次方程的根的判别式为 . (1)>0一元二次方程有两个 实数根,即 . (2)=0一元二次方程有 相等的实数根,即 . (3)<0一元二次方程 实数根. 4. 一元二次方程根与系数的关系 若关于x的一元二次方程有两根分别为,,那么 , . 5.列一元二次方程解应用题的一般步骤:审、找、设、列、解、答六步。 1.(2008年,2分)某县为发展教育事业,加强了对教育经费的投入,2007年投入3 000万元,预计2009年投入5 000万元.设教育经费的年平均增长率为,根据题意,下面所列方程正确的是( ) A. B. C. D. 2.(2010年,3分)已知x = 1是一元二次方程的一个根,则 的值为 . 【分式方程及其应用】 1.分式方程:分母中含有     的方程叫分式方程. 2.解分式方程的一般步骤: (1)去分母,在方程的两边都乘以   ,约去分母,化成整式方程; (2)解这个整式方程; (3)验根,把整式方程的根代入   ,看结果是不是零,使最简公分母为零的根是原方程的增根,必须舍去. 3. 用换元法解分式方程的一般步骤: ① 设辅助未知数,并用含辅助未知数的代数式去表示方程中另外的代数式;② 解所得到的关于辅助未知数的新方程,求出辅助未知数的值;③ 把辅助未知数的值代入原设中,求出原未知数的值;④ 检验作答. 4.分式方程的应用: 分式方程的应用题与一元一次方程应用题类似,不同的是要注意检验: (1)检验所求的解是否是所列 ;(2)检验所求的解是否   . 5.列分式方程解应用题中常用的数量关系及题型 (1)数字问题(包括日历中的数字规律) ①设个位数字为c,十位数字为b,百位数字为a,则这个三位数是 ; ②日历中前后两日差 ,上下两日差 。 (2)体积变化问题。 (3)打折销售问题 ①利润= -成本; ②利润率= ×100%. (4)行程问题。 (5)教育储蓄问题 ①利息= ; ②本息和= =本金×(1+利润×期数); ③利息税= ; ④贷款利息=贷款数额×利率×期数。 6.易错知识辨析: (1) 去分母时,不要漏乘没有分母的项. (2) 解分式方程的重要步骤是检验。 1.(2010年,8分)解方程:. 【一元一次不等式(组)】 1.不等式的有关概念:用 连接起来的式子叫不等式;使不等式成立的 的值叫做不等式的解;一个含有 的不等式的解的 叫做不等式的解集.求一个不等式的 的过程或证明不等式无解的过程叫做解不等式. 2.不等式的基本性质: (1)若<,则+ ; (2)若>,>0则 (或 ); (3)若>,<0则 (或 ). 3.一元一次不等式:只含有 未知数,且未知数的次数是 且系数 的不等式,称为一元一次不等式;一元一次不等式的一般形式为 或;解一元一次不等式的一般步骤:去分母、 、移项、 、系数化为1. 4.一元一次不等式组:几个 合在一起就组成一个一元一次不等式组. 一般地,几个不等式的解集的 ,叫做由它们组成的不等式组的解集. 5.由两个一元一次不等式组成的不等式组的解集有四种情况:(已知) 的解集是,即“小小取小”;的解集是,即“大大取大”; 的解集是,即“大小小大中间找”; 的解集是空集,即“大大小小取不了”. 6.求不等式(组)的特殊解: 不等式(组)的解往往有无数多个,但其特殊解在某些范围内是有限的,如整数解,非负整数解,求这些特殊解应先确定不等式(组)的解集,然后再找到相应答案. 7.易错知识辨析: (1)不等式的解集用数轴来表示时,注意“空心圆圈”和“实心点”的不同含义. (2)解字母系数的不等式时要讨论字母系数的正、负情况. 如不等式(或)()的形式的解集: 当时,(或) 当时,(或)
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传

当前位置:首页 > 教育专区 > 其他

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服