收藏 分销(赏)

实际问题.doc

上传人:仙人****88 文档编号:9455104 上传时间:2025-03-26 格式:DOC 页数:5 大小:89KB
下载 相关 举报
实际问题.doc_第1页
第1页 / 共5页
实际问题.doc_第2页
第2页 / 共5页
点击查看更多>>
资源描述
人教版数学八年级下册 第十九章 一次函数 一次函数与几何综合 专题练习题 1. 如图,直线l1的函数解析式为y=-3x+3,且l1与x轴交于点D,直线l2经过点A,B,直线l1,l2交于点C. (1)求点D的坐标; (2)求直线l2的函数解析式; (3)求△ADC的面积; (4)在直线l2上存在异于点C的另一点P,使得△ADP与△ADC的面积相等,请直接写出点P的坐标. 2. 如图,直线y=2x+6与x轴交于点A,与y轴交于点B,直线y=-x+1与x轴交于点C,与y轴交于点D,两直线交于点E,求S△BDE和S四边形AODE. 3.如图,直线y=-x+8分别交x轴、y轴于A,B两点,线段AB的垂直平分线分别交x轴、y轴于C,D两点. (1)求点C的坐标; (2)求直线CE的解析式; (3)求△BCD的面积. 4. 如图,在平面直角坐标系中,点A(-1,0),B(0,3),直线BC交坐标轴于B,C两点,且∠CBA=45°.求直线BC的解析式. 5. 如图,A(0,4),B(-4,0),D(-2,0),OE⊥AD于点F,交AB于点E,BM⊥OB交OE的延长线于点M. (1)求直线AB和直线AD的解析式; (2)求点M的坐标; (3)求点E,F的坐标. 6. 如图,正方形OBAC中,O(0,0),A(-2,2),B,C分别在x轴、y轴上,D(0,1),CE⊥BD交BD延长线于点E,求点E的坐标. 7. 如图,在平面直角坐标系中,A(0,1),B(3,),P为x轴上一动点,则PA+PB最小时点P的坐标为________. 8. 如图,直线y=x+4与坐标轴交于点A,B,点C(-3,m)在直线AB上,在y轴上找一点P,使PA+PC的值最小,求这个最小值及点P的坐标. 答案: 1. 分析:(1)令y=-3x+3=0,求出x可得点D的坐标;(2)设直线l2的解析式为y=kx+b,把A,B的坐标代入求出k,b可得;(3)先求出点C的坐标,再求S△ADC;(4)在l2上且到x轴的距离等于点C纵坐标的相反数的点即为点P. 解:(1)由y=-3x+3,令y=0,得-3x+3=0,∴x=1,∴D(1,0) (2)y=x-6 (3)由解得∴C(2,-3),∵AD=3,∴S△ADC=×3×|-3|= (4)P(6,3) 2. 解:易求A (-3,0),B(0,6),C(2,0),D(0,1),∴BD=5, 解得 ∴E(-2,2),∴S△BDE=5,S四边形AODE=S△AOB-S△BDE=9-5=4 3. 解:(1)易得A(6,0),B(0,8),设C点坐标为(x,0),则BC=AC=6-x,由勾股定理得x2+82=(6-x)2,∴x=-,∴C(-,0) (2)∵点E是AB的中点,∴点E的坐标为(3,4),易得直线CE的解析式为y=x+ (3)由CE解析式得,点D坐标为(0,),S△BCD=×(8-)×= 4. 分析:过点A作AD⊥AB,AD交BC于点D,可得△BAD是等腰直角三角形,再过点D作DE⊥x轴于点E,通过证△DEA≌△AOB求出点D的坐标,最后由点B,D的坐标利用待定系数法可求出直线BC的解析式. 解:过点A作AD⊥AB,AD交BC于点D,可得AD=AB,过点D作DE⊥x轴于点E,可证△DEA≌△AOB,∴DE=OA=1,EA=OB=3,∴D(-4,1),可求直线BC的解析式为y=x+3 5. 解:(1)AB:y=x+4,AD:y=2x+4 (2)由△OBM≌△AOD得BM=OD,∴M(-4,2) (3)由(2)得OM:y=-x,联立得E(-,);联立得F(-,) 6. 解:延长CE交x轴于点F,则有△BOD≌△COF,∴OD=OF=1,∴F(1,0),∵C(0,2),∴CF:y=-2x+2,∵B(-2,0),D(0,1),∴BD:y=x+1,由得E(,) 7. (2,0) 分析:先作出点A关于x轴对称的点A′,再连接A′B交x轴于点P,则点P即为所求.由题中条件易求出直线A′B的解析式,再求出直线A′B与x轴的交点坐标即可. 8. 解:作点A关于y轴的对称点A′,连接CA′交y轴于P,此时PA+PC值最小,最小值为CA′,易求C(-3,1),∵A′(4,0),∴CA′:y=-x+,∴P(0,),作CE⊥x轴于E,∴CA′==5 第 5 页 共 5 页
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传
相似文档                                   自信AI助手自信AI助手

当前位置:首页 > 教育专区 > 小学其他

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服