资源描述
专题09 三角函数的图象与性质小题综合
考点
十年考情(2015-2024)
命题趋势
考点1 任意角和弧度制及求扇形的弧长、面积计算
(10年3考)
2022·全国甲卷、2020·浙江卷、2015·山东卷
1. 了解任意角和弧度制的概念,能进行弧度与角度的互化,借助单位圆理解三角函数(正弦、余弦、正切)的定义,并能利用三角函数的定义解决相关问题,理解并掌握同角三角函数的基本关系式(平方关系+商数关系),够利用公式化简求值,能借助单位圆的对称性利用三角函数定义推导出诱导公式,能够运用诱导公式解决相关问题,该内容是新高考卷的必考内容,一般会考查三角函数化简求值或特殊角求三角函数值,需加强复习备考
2. 能用五点作图法作出正弦、余弦和正切函数图象,并掌握图象及性质,能用五点作图法作出正弦型、余弦型和正切型函数图象,并掌握图象及性质
会求参数及函数解析式
该内容是新高考卷的必考内容,一般会综合考查三角函数的图象与性质的综合应用,需加强复习备考
3. 理解并掌握三角函数的图象与性质,会先平移后伸缩或先伸缩后平移来综合解决三角函数的伸缩平移变换,该内容是新高考卷的载体内容,一般会结合三角函数的图象与性质综合考查三角函数的伸缩平移变换,需加强复习备考
考点2 任意角的三角函数
(10年3考)
2020·山东卷、2020·全国卷、2018·北京卷
考点3 同角三角函数的基本关系(含弦切互化)
(10年8考)
2024·全国甲卷、2023·全国乙卷、2021·全国甲卷
2021·全国新Ⅰ卷、2020·全国卷、2019·江苏卷
2018·全国卷、2018·全国卷、2016·全国卷
2016·全国卷、2015·重庆卷、2015·福建卷
2015·四川卷
考点4 诱导公式及其化简求值
(10年3考)
2023·全国甲卷、2022·浙江卷
2017·全国卷、2017·北京卷
考点5 三角函数的图象与性质(基础)
(10年6考)
2024·全国甲卷、2024·天津卷、2024·上海卷
2024·北京卷、2022·全国新Ⅱ卷、2022·全国乙卷
2022·天津卷、2021·北京卷、2021·全国甲卷
2021·全国乙卷、2019·北京卷、2018·全国卷
2017·山东卷、2017·全国卷
考点6 三角函数的图象与性质(拔高)
(10年10考)
2024·天津卷、2024·全国新Ⅰ卷、2024·全国新Ⅱ卷
2024·全国新Ⅱ卷、2023·全国甲卷、2023·全国乙卷2023·天津卷、2023·全国新Ⅰ卷、2023·全国新Ⅱ卷
2022·全国甲卷、2022·北京卷、2022·全国新Ⅰ卷
2021·全国新Ⅰ卷、2021·全国甲卷、2020·全国卷
2020·山东卷、2020·全国卷、2019·全国卷
2019·全国卷、2019·全国卷、2019·全国卷
2019·全国卷、2018·江苏卷、2018·全国卷
2018·全国卷、2018·北京卷、2017·全国卷
2017·全国卷、2017·全国卷、2017·全国卷
2016·全国卷、2016·全国卷、2016·山东卷
2016·浙江卷、2016·上海、2015·四川卷、
2015·安徽卷、2015·北京卷、2015·浙江卷
2015·湖南卷
考点7 三角函数的图象与性质(压轴)
(10年3考)
2017·天津卷、2017·上海卷、2016·天津卷
2016·全国卷、2015·上海卷
考点8 三角函数的伸缩平移变换
(10年9考)
2023·全国甲卷、2022·天津卷、2022·浙江卷
2022·全国甲卷、2021·全国乙卷、2020·天津卷
2020·江苏卷、2019·天津卷、2018·天津卷
2018·天津卷、2017·全国卷、2016·四川卷
2016·全国卷、2016·北京卷、2016·全国卷
2016·四川卷、2016·全国卷、2016·全国卷
2015·山东卷、2015·山东卷、2015·湖南卷
考点01 任意角和弧度制及求扇形的弧长、面积计算
1.(2022·全国甲卷·高考真题)沈括的《梦溪笔谈》是中国古代科技史上的杰作,其中收录了计算圆弧长度的“会圆术”,如图,是以O为圆心,OA为半径的圆弧,C是AB的中点,D在上,.“会圆术”给出的弧长的近似值s的计算公式:.当时,( )
A. B. C. D.
【答案】B
【分析】连接,分别求出,再根据题中公式即可得出答案.
【详解】解:如图,连接,
因为是的中点,
所以,
又,所以三点共线,
即,
又,
所以,
则,故,
所以.
故选:B.
2.(2020·浙江·高考真题)已知圆锥的侧面积(单位:) 为2π,且它的侧面积展开图是一个半圆,则这个圆锥的底面半径(单位:)是 .
【答案】
【分析】利用题目所给圆锥侧面展开图的条件列方程组,由此求得底面半径.
【详解】设圆锥底面半径为,母线长为,则
,解得.
故答案为:
【点睛】本小题主要考查圆锥侧面展开图有关计算,属于基础题.
3.(2015·山东·高考真题)终边在轴的正半轴上的角的集合是( )
A. B.
C. D.
【答案】A
【分析】利用终边落在坐标轴上角的表示方法即可求解
【详解】终边在轴正半轴上的角的集合是
故选:A
考点02 任意角的三角函数
1.(2020·山东·高考真题)已知直线的图像如图所示,则角是( )
A.第一象限角 B.第二象限角 C.第三象限角 D.第四象限角
【答案】D
【分析】本题可根据直线的斜率和截距得出、,即可得出结果.
【详解】结合图像易知,,,
则角是第四象限角,
故选:D.
2.(2020·全国·高考真题)若α为第四象限角,则( )
A.cos2α>0 B.cos2α<0 C.sin2α>0 D.sin2α<0
【答案】D
【分析】由题意结合二倍角公式确定所给的选项是否正确即可.
【详解】方法一:由α为第四象限角,可得,
所以
此时的终边落在第三、四象限及轴的非正半轴上,所以
故选:D.
方法二:当时,,选项B错误;
当时,,选项A错误;
由在第四象限可得:,则,选项C错误,选项D正确;
故选:D.
【点睛】本题主要考查三角函数的符号,二倍角公式,特殊角的三角函数值等知识,意在考查学生的转化能力和计算求解能力.
3.(2018·北京·高考真题)在平面直角坐标系中,是圆上的四段弧(如图),点P在其中一段上,角以为始边,OP为终边,若,则P所在的圆弧是
A. B.
C. D.
【答案】C
【详解】分析:逐个分析A、B、C、D四个选项,利用三角函数的三角函数线可得正确结论.
详解:由下图可得:有向线段为余弦线,有向线段为正弦线,有向线段为正切线.
A选项:当点在上时,,
,故A选项错误;
B选项:当点在上时,,,
,故B选项错误;
C选项:当点在上时,,,
,故C选项正确;
D选项:点在上且在第三象限,,故D选项错误.
综上,故选C.
点睛:此题考查三角函数的定义,解题的关键是能够利用数形结合思想,作出图形,找到所对应的三角函数线进行比较.
考点03 同角三角函数的基本关系(含弦切互化)
1.(2024·全国甲卷·高考真题)已知,则( )
A. B. C. D.
【答案】B
【分析】先将弦化切求得,再根据两角和的正切公式即可求解.
【详解】因为,
所以,,
所以,
故选:B.
2.(2023·全国乙卷·高考真题)若,则 .
【答案】
【分析】根据同角三角关系求,进而可得结果.
【详解】因为,则,
又因为,则,
且,解得或(舍去),
所以.
故答案为:.
3.(2021·全国甲卷·高考真题)若,则( )
A. B. C. D.
【答案】A
【分析】由二倍角公式可得,再结合已知可求得,利用同角三角函数的基本关系即可求解.
【详解】
,
,,,解得,
,.
故选:A.
【点睛】关键点睛:本题考查三角函数的化简问题,解题的关键是利用二倍角公式化简求出.
4.(2021·全国新Ⅰ卷·高考真题)若,则( )
A. B. C. D.
【答案】C
【分析】将式子先利用二倍角公式和平方关系配方化简,然后增添分母(),进行齐次化处理,化为正切的表达式,代入即可得到结果.
【详解】将式子进行齐次化处理得:
.
故选:C.
【点睛】易错点睛:本题如果利用,求出的值,可能还需要分象限讨论其正负,通过齐次化处理,可以避开了这一讨论.
5.(2020·全国·高考真题)已知,且,则( )
A. B.
C. D.
【答案】A
【分析】用二倍角的余弦公式,将已知方程转化为关于的一元二次方程,求解得出,再用同角间的三角函数关系,即可得出结论.
【详解】,得,
即,解得或(舍去),
又.
故选:A.
【点睛】本题考查三角恒等变换和同角间的三角函数关系求值,熟记公式是解题的关键,考查计算求解能力,属于基础题.
6.(2019·江苏·高考真题)已知,则的值是 .
【答案】.
【分析】由题意首先求得的值,然后利用两角和差正余弦公式和二倍角公式将原问题转化为齐次式求值的问题,最后切化弦求得三角函数式的值即可.
【详解】由,
得,
解得,或.
,
当时,上式
当时,上式=
综上,
【点睛】本题考查三角函数的化简求值,渗透了逻辑推理和数学运算素养.采取转化法,利用分类讨论和转化与化归思想解题.
7.(2018·全国·高考真题)已知,,则 .
【答案】
【分析】方法一:将两式平方相加即可解出.
【详解】[方法一]:【最优解】
两式两边平方相加得,.
[方法二]: 利用方程思想直接解出
,两式两边平方相加得,则.
又或,所以.
[方法三]: 诱导公式+二倍角公式
由,可得,则或.
若,代入得,即.
若,代入得,与题设矛盾.
综上所述,.
[方法四]:平方关系+诱导公式
由,得.
又,,即,则.从而.
[方法五]:和差化积公式的应用
由已知得
,则或.
若,则,即.
当k为偶数时,,由,得,又,所以.
当k为奇数时,,得,这与已知矛盾.
若,则.则,得,这与已知矛盾.
综上所述,.
【整体点评】方法一:结合两角和的正弦公式,将两式两边平方相加解出,是该题的最优解;
方法二:通过平方关系利用方程思想直接求出四个三角函数值,进而解出;
方法三:利用诱导公式寻求角度之间的关系,从而解出;
方法四:基本原理同方法三,只是寻找角度关系的方式不同;
方法五:将两式相乘,利用和差化积公式找出角度关系,再一一验证即可解出,该法稍显麻烦.
8.(2018·全国·高考真题)函数的最小正周期为
A. B. C. D.
【答案】C
【详解】分析:将函数进行化简即可
详解:由已知得
的最小正周期
故选C.
点睛:本题主要考查三角函数的化简和最小正周期公式,属于中档题
9.(2016·全国·高考真题)若 ,则
A. B. C.1 D.
【答案】A
【详解】试题分析:由,得或,所以,故选A.
【考点】同角三角函数间的基本关系,倍角公式.
【方法点拨】三角函数求值:①“给角求值”将非特殊角向特殊角转化,通过相消或相约消去非特殊角,进而求出三角函数值;②“给值求值”关键是目标明确,建立已知和所求之间的联系.
10.(2016·全国·高考真题)若 ,则
A. B. C. D.
【答案】D
【详解】.
分子分母同时除以,即得:.
故选D.
11.(2015·重庆·高考真题)若,则( )
A.1 B.2 C.3 D.4
【答案】C
【详解】
,
所以 原式
,
故选C.
点睛:三角恒等变换的主要题目类型是求值,在求值时只要根据求解目标的需要,结合已知条件选用合适的公式计算即可.本例应用两角和与差的正弦(余弦)公式化解所求式子,利用同角关系式使得已知条件可代入后再化简,求解过程中注意公式的顺用和逆用.
本题主要考查两角和与差的公式.
12.(2015·福建·高考真题)若,且为第四象限角,则的值等于
A. B. C. D.
【答案】D
【详解】∵sina=,且a为第四象限角,
∴,
则,
故选D.
13.(2015·四川·高考真题)已知sinα+2cosα=0,则2sinαcosα-cos2α的值是 .
【答案】-1
【详解】由已知可得,sinα=-2cosα,即tanα=-2
2sinαcosα-cos2α=
考点:本意考查同角三角函数关系式、三角函数恒等变形等基础知识,考查综合处理问题的能力.
考点04 诱导公式及其化简求值
1.(2023·全国甲卷·高考真题)若为偶函数,则 .
【答案】2
【分析】利用偶函数的性质得到,从而求得,再检验即可得解.
【详解】因为为偶函数,定义域为,
所以,即,
则,故,
此时,
所以,
又定义域为,故为偶函数,
所以.
故答案为:2.
2.(2022·浙江·高考真题)若,则 , .
【答案】
【分析】先通过诱导公式变形,得到的同角等式关系,再利用辅助角公式化简成正弦型函数方程,可求出,接下来再求.
【详解】[方法一]:利用辅助角公式处理
∵,∴,即,
即,令,,
则,∴,即,
∴ ,
则.
故答案为:;.
[方法二]:直接用同角三角函数关系式解方程
∵,∴,即,
又,将代入得,解得,
则.
故答案为:;.
3.(2017·全国·高考真题)函数f(x)=sin(x+)+cos(x−)的最大值为
A. B.1 C. D.
【答案】A
【详解】由诱导公式可得,
则,
函数的最大值为.
所以选A.
【名师点睛】三角恒等变换的综合应用主要是将三角变换与三角函数的性质相结合,通过变换把函数化为的形式,再借助三角函数的图像研究性质,解题时注意观察角、函数名、结构等特征.
4.(2017·北京·高考真题)在平面直角坐标系中,角与角均以为始边,它们的终边关于轴对称.若,则 .
【答案】
【详解】试题分析:因为角与角的终边关于轴对称,所以,所以.
【名师点睛】本题考查了角的对称关系,以及诱导公式,常用的一些对称关系包含:若与的终边关于轴对称,则 ,若与的终边关于轴对称,则,若与的终边关于原点对称,则.
5.(2016·四川·高考真题)= .
【答案】
【详解】试题分析:由三角函数的诱导公式得.
【考点】三角函数的诱导公式
【名师点睛】本题也可以看作来自于课本的题,直接利用课本公式解题,这告诉我们一定要立足于课本.有许多三角函数的求值问题都是通过三角函数公式把一般的三角函数求值化为特殊角的三角函数求值而得解.
考点05 三角函数的图象与性质(基础)
1.(2024·全国甲卷·高考真题)函数在上的最大值是 .
【答案】2
【分析】结合辅助角公式化简成正弦型函数,再求给定区间最值即可.
【详解】,当时,,
当时,即时,.
故答案为:2
2.(2024·天津·高考真题)下列函数是偶函数的是( )
A. B. C. D.
【答案】B
【分析】根据偶函数的判定方法一一判断即可.
【详解】对A,设,函数定义域为,但,,则,故A错误;
对B,设,函数定义域为,
且,则为偶函数,故B正确;
对C,设,函数定义域为,不关于原点对称, 则不是偶函数,故C错误;
对D,设,函数定义域为,因为,,
则,则不是偶函数,故D错误.
故选:B.
3.(2024·上海·高考真题)下列函数的最小正周期是的是( )
A. B.
C. D.
【答案】A
【分析】根据辅助角公式、二倍角公式以及同角三角函数关系并结合三角函数的性质一一判断即可 .
【详解】对A,,周期,故A正确;
对B,,周期,故B错误;
对于选项C,,是常值函数,不存在最小正周期,故C错误;
对于选项D,,周期,故D错误,
故选:A.
4.(2024·北京·高考真题)设函数.已知,,且的最小值为,则( )
A.1 B.2 C.3 D.4
【答案】B
【分析】根据三角函数最值分析周期性,结合三角函数最小正周期公式运算求解.
【详解】由题意可知:为的最小值点,为的最大值点,
则,即,
且,所以.
故选:B.
5.(2022·全国新Ⅱ卷·高考真题)(多选)已知函数的图像关于点中心对称,则( )
A.在区间单调递减
B.在区间有两个极值点
C.直线是曲线的对称轴
D.直线是曲线的切线
【答案】AD
【分析】根据三角函数的性质逐个判断各选项,即可解出.
【详解】由题意得:,所以,,
即,
又,所以时,,故.
对A,当时,,由正弦函数图象知在上是单调递减;
对B,当时,,由正弦函数图象知只有1个极值点,由,解得,即为函数的唯一极值点;
对C,当时,,,直线不是对称轴;
对D,由得:,
解得或,
从而得:或,
所以函数在点处的切线斜率为,
切线方程为:即.
故选:AD.
6.(2022·全国乙卷·高考真题)记函数的最小正周期为T,若,为的零点,则的最小值为 .
【答案】
【分析】首先表示出,根据求出,再根据为函数的零点,即可求出的取值,从而得解;
【详解】解: 因为,(,)
所以最小正周期,因为,
又,所以,即,
又为的零点,所以,解得,
因为,所以当时;
故答案为:
7.(2022·天津·高考真题)已知,关于该函数有下列四个说法:
①的最小正周期为;
②在上单调递增;
③当时,的取值范围为;
④的图象可由的图象向左平移个单位长度得到.
以上四个说法中,正确的个数为( )
A. B. C. D.
【答案】A
【分析】根据三角函数的图象与性质,以及变换法则即可判断各说法的真假.
【详解】因为,所以的最小正周期为,①不正确;
令,而在上递增,所以在上单调递增,②正确;因为,,所以,③不正确;
由于,所以的图象可由的图象向右平移个单位长度得到,④不正确.
故选:A.
8.(2021·北京·高考真题)函数是
A.奇函数,且最大值为2 B.偶函数,且最大值为2
C.奇函数,且最大值为 D.偶函数,且最大值为
【答案】D
【分析】由函数奇偶性的定义结合三角函数的性质可判断奇偶性;利用二倍角公式结合二次函数的性质可判断最大值.
【详解】由题意,,所以该函数为偶函数,
又,
所以当时,取最大值.
故选:D.
9.(2021·全国甲卷·高考真题)已知函数的部分图像如图所示,则满足条件的最小正整数x为 .
【答案】2
【分析】先根据图象求出函数的解析式,再求出的值,然后求解三角不等式可得最小正整数或验证数值可得.
【详解】由图可知,即,所以;
由五点法可得,即;
所以.
因为,;
所以由可得或;
因为,所以,
方法一:结合图形可知,最小正整数应该满足,即,
解得,令,可得,
可得的最小正整数为2.
方法二:结合图形可知,最小正整数应该满足,又,符合题意,可得的最小正整数为2.
故答案为:2.
【点睛】关键点睛:根据图象求解函数的解析式是本题求解的关键,根据周期求解,根据特殊点求解.
10.(2021·全国乙卷·高考真题)函数的最小正周期和最大值分别是( )
A.和 B.和2 C.和 D.和2
【答案】C
【分析】利用辅助角公式化简,结合三角函数周期性和值域求得函数的最小正周期和最大值.
【详解】由题,,所以的最小正周期为,最大值为.
故选:C.
11.(2019·北京·高考真题)函数f(x)=sin22x的最小正周期是 .
【答案】.
【分析】将所给的函数利用降幂公式进行恒等变形,然后求解其最小正周期即可.
【详解】函数,周期为
【点睛】本题主要考查二倍角的三角函数公式、三角函数的最小正周期公式,属于基础题.
12.(2018·全国·高考真题)函数在的零点个数为 .
【答案】
【分析】方法一:求出的范围,再由函数值为零,得到的取值即得零点个数.
【详解】[方法一]:【最优解】
由题可知,或
解得,或故有3个零点.
故答案为:.
方法二:
令,即,解得,,分别令,得,所以函数在的零点的个数为3.
故答案为:.
【整体点评】方法一:先求出的范围,再根据余弦函数在该范围内的零点,从而解出,是该题的最优解;
方法二:先求出函数的所有零点,再根据题中范围限制,找出符合题意的零点.
13.(2017·山东·高考真题)函数y=sin2x+cos 2x的最小正周期为( )
A. B. C.π D.2π
【答案】C
【分析】利用辅助角公式将函数化简,再利用周期公式计算可得.
【详解】∵y=2=2sin,
,
故选:C.
【点睛】该题考查三角函数的性质与辅助角公式,属于基础题目.
14.(2017·全国·高考真题)函数的最小正周期为
A. B. C. D.
【答案】C
【详解】由题意,故选C.
【名师点睛】函数的性质:
(1).
(2)最小正周期
(3)由求对称轴.
(4)由求增区间;由求减区间.
考点06 三角函数的图象与性质(拔高)
一、单选题
1.(2024·天津·高考真题)已知函数的最小正周期为.则在的最小值是( )
A. B. C.0 D.
【答案】A
【分析】先由诱导公式化简,结合周期公式求出,得,再整体求出时,的范围,结合正弦三角函数图象特征即可求解.
【详解】,由得,
即,当时,,
画出图象,如下图,
由图可知,在上递减,
所以,当时,
故选:A
2.(2024·全国新Ⅰ卷·高考真题)当时,曲线与的交点个数为( )
A.3 B.4 C.6 D.8
【答案】C
【分析】画出两函数在上的图象,根据图象即可求解
【详解】因为函数的的最小正周期为,
函数的最小正周期为,
所以在上函数有三个周期的图象,
在坐标系中结合五点法画出两函数图象,如图所示:
由图可知,两函数图象有6个交点.
故选:C
3.(2024·全国新Ⅱ卷·高考真题)设函数,,当时,曲线与恰有一个交点,则( )
A. B. C.1 D.2
【答案】D
【分析】解法一:令,分析可知曲线与恰有一个交点,结合偶函数的对称性可知该交点只能在y轴上,即可得,并代入检验即可;解法二:令,可知为偶函数,根据偶函数的对称性可知的零点只能为0,即可得,并代入检验即可.
【详解】解法一:令,即,可得,
令,
原题意等价于当时,曲线与恰有一个交点,
注意到均为偶函数,可知该交点只能在y轴上,
可得,即,解得,
若,令,可得
因为,则,当且仅当时,等号成立,
可得,当且仅当时,等号成立,
则方程有且仅有一个实根0,即曲线与恰有一个交点,
所以符合题意;
综上所述:.
解法二:令,
原题意等价于有且仅有一个零点,
因为,
则为偶函数,
根据偶函数的对称性可知的零点只能为0,
即,解得,
若,则,
又因为当且仅当时,等号成立,
可得,当且仅当时,等号成立,
即有且仅有一个零点0,所以符合题意;
故选:D.
4.(2023·全国甲卷·高考真题)函数的图象由函数的图象向左平移个单位长度得到,则的图象与直线的交点个数为( )
A.1 B.2 C.3 D.4
【答案】C
【分析】先利用三角函数平移的性质求得,再作出与的部分大致图像,考虑特殊点处与的大小关系,从而精确图像,由此得解.
【详解】因为向左平移个单位所得函数为,所以,
而显然过与两点,
作出与的部分大致图像如下,
考虑,即处与的大小关系,
当时,,;
当时,,;
当时,,;
所以由图可知,与的交点个数为.
故选:C.
5.(2023·全国乙卷·高考真题)已知函数在区间单调递增,直线和为函数的图像的两条相邻对称轴,则( )
A. B. C. D.
【答案】D
【分析】根据题意分别求出其周期,再根据其最小值求出初相,代入即可得到答案.
【详解】因为在区间单调递增,
所以,且,则,,
当时,取得最小值,则,,
则,,不妨取,则,
则,
故选:D.
6.(2023·天津·高考真题)已知函数的图象关于直线对称,且的一个周期为4,则的解析式可以是( )
A. B.
C. D.
【答案】B
【分析】由题意分别考查函数的最小正周期和函数在处的函数值,排除不合题意的选项即可确定满足题意的函数解析式.
【详解】由函数的解析式考查函数的最小周期性:
A选项中,B选项中,
C选项中,D选项中,
排除选项CD,
对于A选项,当时,函数值,故是函数的一个对称中心,排除选项A,
对于B选项,当时,函数值,故是函数的一条对称轴,
故选:B.
7.(2022·全国甲卷·高考真题)设函数在区间恰有三个极值点、两个零点,则的取值范围是( )
A. B. C. D.
【答案】C
【分析】由的取值范围得到的取值范围,再结合正弦函数的性质得到不等式组,解得即可.
【详解】解:依题意可得,因为,所以,
要使函数在区间恰有三个极值点、两个零点,又,的图象如下所示:
则,解得,即.
故选:C.
8.(2022·北京·高考真题)已知函数,则( )
A.在上单调递减 B.在上单调递增
C.在上单调递减 D.在上单调递增
【答案】C
【分析】化简得出,利用余弦型函数的单调性逐项判断可得出合适的选项.
【详解】因为.
对于A选项,当时,,则在上单调递增,A错;
对于B选项,当时,,则在上不单调,B错;
对于C选项,当时,,则在上单调递减,C对;
对于D选项,当时,,则在上不单调,D错.
故选:C.
9.(2022·全国新Ⅰ卷·高考真题)记函数的最小正周期为T.若,且的图象关于点中心对称,则( )
A.1 B. C. D.3
【答案】A
【分析】由三角函数的图象与性质可求得参数,进而可得函数解析式,代入即可得解.
【详解】由函数的最小正周期T满足,得,解得,
又因为函数图象关于点对称,所以,且,
所以,所以,,
所以.
故选:A
10.(2021·全国新Ⅰ卷·高考真题)下列区间中,函数单调递增的区间是( )
A. B. C. D.
【答案】A
【分析】解不等式,利用赋值法可得出结论.
【详解】因为函数的单调递增区间为,
对于函数,由,
解得,
取,可得函数的一个单调递增区间为,
则,,A选项满足条件,B不满足条件;
取,可得函数的一个单调递增区间为,
且,,CD选项均不满足条件.
故选:A.
【点睛】方法点睛:求较为复杂的三角函数的单调区间时,首先化简成形式,再求的单调区间,只需把看作一个整体代入的相应单调区间内即可,注意要先把化为正数.
11.(2020·全国·高考真题)设函数在的图像大致如下图,则f(x)的最小正周期为( )
A. B.
C. D.
【答案】C
【分析】由图可得:函数图象过点,即可得到,结合是函数图象与轴负半轴的第一个交点即可得到,即可求得,再利用三角函数周期公式即可得解.
【详解】由图可得:函数图象过点,
将它代入函数可得:
又是函数图象与轴负半轴的第一个交点,
所以,解得:
所以函数的最小正周期为
故选:C
【点睛】本题主要考查了三角函数的性质及转化能力,还考查了三角函数周期公式,属于中档题.
12.(2019·全国·高考真题)若x1=,x2=是函数f(x)=(>0)两个相邻的极值点,则=
A.2 B.
C.1 D.
【答案】A
【分析】从极值点可得函数的周期,结合周期公式可得.
【详解】由题意知,的周期,得.故选A.
【点睛】本题考查三角函数的极值、最值和周期,渗透了直观想象、逻辑推理和数学运算素养.采取公式法,利用方程思想解题.
13.(2019·全国·高考真题)设函数=sin()(>0),已知在有且仅有5个零点,下述四个结论:
①在()有且仅有3个极大值点
②在()有且仅有2个极小值点
③在()单调递增
④的取值范围是[)
其中所有正确结论的编号是
A.①④ B.②③ C.①②③ D.①③④
【答案】D
【分析】本题为三角函数与零点结合问题,难度大,通过整体换元得,结合正弦函数的图像分析得出答案.
【详解】当时,,
∵f(x)在有且仅有5个零点,
∴,
∴,故④正确,
由,知时,
令时取得极大值,①正确;
极小值点不确定,可能是2个也可能是3个,②不正确;
因此由选项可知只需判断③是否正确即可得到答案,
当时,,
若f(x)在单调递增,
则 ,即 ,
∵,故③正确.
故选D.
【点睛】极小值点个数动态的,易错,③正确性考查需认真计算,易出错,本题主要考查了整体换元的思想解三角函数问题,属于中档题.
14.(2019·全国·高考真题)下列函数中,以为周期且在区间(,)单调递增的是
A.f(x)=│cos 2x│ B.f(x)=│sin 2x│
C.f(x)=cos│x│ D.f(x)= sin│x│
【答案】A
【分析】本题主要考查三角函数图象与性质,渗透直观想象、逻辑推理等数学素养.画出各函数图象,即可做出选择.
【详解】因为图象如下图,知其不是周期函数,排除D;因为,周期为,排除C,作出图象,由图象知,其周期为,在区间单调递增,A正确;作出的图象,由图象知,其周期为,在区间单调递减,排除B,故选A.
【点睛】
利用二级结论:①函数的周期是函数周期的一半;②不是周期函数;
15.(2019·全国·高考真题)关于函数有下述四个结论:
①f(x)是偶函数 ②f(x)在区间(,)单调递增
③f(x)在有4个零点 ④f(x)的最大值为2
其中所有正确结论的编号是
A.①②④ B.②④ C.①④ D.①③
【答案】C
【分析】化简函数,研究它的性质从而得出正确答案.
【详解】为偶函数,故①正确.当时,,它在区间单调递减,故②错误.当时,,它有两个零点:;当时,,它有一个零点:,故在有个零点:,故③错误.当时,;当时,,又为偶函数,的最大值为,故④正确.综上所述,①④ 正确,故选C.
【点睛】画出函数的图象,由图象可得①④正确,故选C.
16.(2018·全国·高考真题)已知函数,则
A.的最小正周期为,最大值为
B.的最小正周期为,最大值为
C.的最小正周期为,最大值为
D.的最小正周期为,最大值为
【答案】B
【分析】首先利用余弦的倍角公式,对函数解析式进行化简,将解析式化简为,之后应用余弦型函数的性质得到相关的量,从而得到正确选项.
【详解】根据题意有,
所以函数的最小正周期为,
且最大值为,故选B.
【点睛】该题考查的是有关化简三角函数解析式,并且通过余弦型函数的相关性质得到函数的性质,在解题的过程中,要注意应用余弦倍角公式将式子降次升角,得到最简结果.
17.(2018·全国·高考真题)若在是减函数,则的最大值是
A. B. C. D.
【答案】A
【详解】因为,
所以由得
因此,从而的最大值为,故选:A.
18.(2017·全国·高考真题)设函数f(x)=cos(x+),则下列结论错误的是
A.f(x)的一个周期为−2π B.y=f(x)的图像关于直线x=对称
C.f(x+π)的一个零点为x= D.f(x)在(,π)单调递减
【答案】D
【详解】f(x)的最小正周期为2π,易知A正确;
f=cos=cos3π=-1,为f(x)的最小值,故B正确;
∵f(x+π)=cos=-cos,∴f=-cos=-cos=0,故C正确;
由于f=cos=cosπ=-1,为f(x)的最小值,故f(x)在上不单调,故D错误.
故选D.
19.(2017·全国·高考真题)函数f(x)=sin(x+)+cos(x−)的最大值为
A. B.1 C. D.
【答案】A
【详解】由诱导公式可得,
则,
函数的最大值为.
所以选A.
【名师点睛】三角恒等变换的综合应用主要是将三角变换与三角函数的性质相结合,通过变换把函数化为的形式,再借助三角函数的图像研究性质,解题时注意观察角、函数名、结构等特征.
20.(2016·全国·高考真题)函数的部分图象如图所示,则
A.
B.
C.
D.
【答案】A
【详解】试题分析:由题图知,,最小正周期,所以,所以.因为图象过点,所以,所以,所以,令,得,所以,故选A.
【考点】三角函数的图象与性质
【名师点睛】根据图象求解析式问题的一般方法是:先根据函数图象的最高点、最低点确定A,h的值,由函数的周期确定ω的值,再根据函数图象上的一个特殊点确定φ值.
21.(2016·全国·高考真题)函数的最大值为
A.4 B.5 C.6 D.7
【答案】B
【详解】试题分析:因为,而,所以当时,取得最大值5,选B.
【考点】 正弦函数的性质、二次函数的性质
【名师点睛】求解本题易出现的错误是认为当时,函数取得最大值.
22.(2016·山东·高考真题)函数的最小正周期是( )
A. B.π C. D.2π
【答案】B
【分析】因为,根据辅助角公式可化简为,根据正弦二倍角公式和正弦周期公式,即可求得答案.
【详解】
,
故最小正周期,
故选:B.
【点睛】本题主要考查和差倍半的三角函数、三角函数的图象和性质.此类题目是三角函数问题中的典型题目,可谓相当经典.解答本题,关键在于能利用三角公式化简函数、进一步讨论函数的性质,本题较易,能较好地考查考生的运算求解能力及对复杂式子的变形能力等.
23.(2016·浙江·高考真题)设函数,则的最小正周期
A.与b有关,且与c有关
B.与b有关,但与c无关
C.与b无关,且与c无关
D.与b无关,但与c有关
【答案】B
【详解】试题分析:,其中当时,,此时周期是;当时,周期为,而不影响周期.故选B.
【考点】降幂公式,三角函数的最小正周期.
【思路点睛】先利用三角恒等变换(降幂公式)化简函数,再判断和的取值是否影响函数的最小正周期.
24.(2015·四川·高考真题)下列函数中,最小正周期为且图象关于原点对称的函数是( )
A. B.
C. D.
【答案】A
【分析】求出函数的周期,函数的奇偶性,判断求解即可.
【详解】解:y=cos(2x)=﹣sin2x,是奇函数,函数的周期为:π,满足题意,所以A正确
y=sin(2x)=cos2x,函数是偶函数,周期为:π,不满足题意,所以B不正确;
y=sin2x+cos2xsin(2x),函数是非奇非偶函数,周期为π,所以C不正确;
y=sinx+cosxsin(x),函数是非奇非偶函数,周期为2π,所以D不正确;
故选A.
考点:三角函数的性质.
25.(2015·安徽·高考真题)已知函数(,,均为正的常数)的最小正周期为,当时,函数取得最小值,则下列结论正确的是( )
A.
B.
C.
D.
【答案】A
【分析】依题意可求ω=2,又当x时,函数f(x)取得最小值,可解得φ,从而可求
展开阅读全文