资源描述
MATLAB插值与拟合
§1曲线拟合
1. 1. 多项式曲线拟合函数:polyfit( )
调用格式: p=polyfit(x,y,n)
[p,s]= polyfit(x,y,n)
说明:x,y为数据点,n为多项式阶数,返回p为幂次从高到低的多项式系数向量p。矩阵s用于生成预测值的误差估计。(见下一函数polyval)
例:由离散数据
x
0
.1
.2
.3
.4
.5
.6
.7
.8
.9
1
y
.3
.5
1
1.4
1.6
1.9
.6
.4
.8
1.5
2
拟合出多项式。
程序:
x=0:.1:1;
y=[.3 .5 1 1.4 1.6 1.9 .6 .4 .8 1.5 2]
n=3;
p=polyfit(x,y,n)
xi=linspace(0,1,100);
z=polyval(p,xi); %多项式求值
plot(x,y,’o’,xi,z,’k:’,x,y,’b’)
legend(‘原始数据’,’3阶曲线’)
结果:
p =
16.7832 -25.7459 10.9802 -0.0035
多项式为:16.7832x3-25.7459x2+10.9802x-0.0035
曲线拟合图形:
也可由函数给出数据。
例3:x=1:20,y=x+3*sin(x)
程序:
x=1:20;
y=x+3*sin(x);
p=polyfit(x,y,6)
xi=1inspace(1,20,100);
z=poyval(p,xi); %多项式求值函数
plot(x,y,’o’,xi,z,’k:’,x,y,’b’)
legend(‘原始数据’,’6阶曲线’)
结果:
p =
0.0000 -0.0021 0.0505 -0.5971 3.6472 -9.7295 11.3304
再用10阶多项式拟合
程序:x=1:20;
y=x+3*sin(x);
p=polyfit(x,y,10)
xi=linspace(1,20,100);
z=polyval(p,xi);
plot(x,y,'o',xi,z,'k:',x,y,'b')
legend('原始数据','10阶多项式')
结果:p =
Columns 1 through 7
0.0000 -0.0000 0.0004 -0.0114 0.1814 -1.8065 11.2360
Columns 8 through 11
-42.0861 88.5907 -92.8155 40.2671
可用不同阶的多项式来拟合数据,但也不是阶数越高拟合的越好。
1、2 多项式曲线求值函数:polyval( )
调用格式: y=polyval(p,x)
说明:y=polyval(p,x)为返回对应自变量x在给定系数P的多项式的值。
1、3 向自定义函数拟合
对于给定的数据,根据经验拟合为带有待定常数的自定义函数。
所用函数:nlinfit( )
调用格式: [beta,r,J]=nlinfit(X,y,’fun’,betao)
说明:beta返回函数’fun’中的待定常数;r表示残差;J表示雅可比矩阵。X,y为数据;‘fun’自定义函数;beta0待定常数初值。
例:在化工生产中获得的氯气的级分y随生产时间x下降,假定在x≥8时,y与x之间有如下形式的非线性模型:
现收集了44组数据,利用该数据通过拟合确定非线性模型中的待定常数。
x y x y x y
8 0.49 16 0.43 28 0.41
8 0.49 18 0.46 28 0.40
10 0.48 18 0.45 30 0.40
10 0.47 20 0.42 30 0.40
10 0.48 20 0.42 30 0.38
10 0.47 20 0.43 32 0.41
12 0.46 20 0.41 32 0.40
12 0.46 22 0.41 34 0.40
12 0.45 22 0.40 36 0.41
12 0.43 24 0.42 36 0.36
14 0.45 24 0.40 38 0.40
14 0.43 24 0.40 38 0.40
14 0.43 26 0.41 40 0.36
16 0.44 26 0.40 42 0.39
16 0.43 26 0.41
首先定义非线性函数的m文件:model.m
function yy=model(beta0,x)
a=beta0(1);
b=beta0(2);
yy=a+(0.49-a)*exp(-b*(x-8));
程序:
x=[8.00 8.00 10.00 10.00 10.00 10.00 12.00 12.00 12.00 14.00 14.00 14.00...
16.00 16.00 16.00 18.00 18.00 20.00 20.00 20.00 20.00 22.00 22.00 24.00...
24.00 24.00 26.00 26.00 26.00 28.00 28.00 30.00 30.00 30.00 32.00 32.00...
34.00 36.00 36.00 38.00 38.00 40.00 42.00]';
y=[0.49 0.49 0.48 0.47 0.48 0.47 0.46 0.46 0.45 0.43 0.45 0.43 0.43 0.44 0.43...
0.43 0.46 0.42 0.42 0.43 0.41 0.41 0.40 0.42 0.40 0.40 0.41 0.40 0.41 0.41...
0.40 0.40 0.40 0.38 0.41 0.40 0.40 0.41 0.38 0.40 0.40 0.39 0.39]';
beta0=[0.30 0.02];
betafit = nlinfit(x,y,'model',beta0)
结果:betafit =
0.3896
0.1011
即:a=0.3896 ,b=0.1011 拟合函数为:
1.4曲线拟合工具箱
curve fitting tollbox
曲线拟合工具箱 book.iLoveM
MATLAB有一个功能强大的曲线拟合工具箱 cftool ,使用方便,能实现多种类型的线性、非线性曲线拟合。下面结合我使用的 Matlab R2007b 来简单介绍如何使用这个工具箱。
假设我们要拟合的函数形式是 y=A*x*x + B*x, 且A>0,B>0 。
1、在命令行输入数据:
》x=[110.3323 148.7328 178.064 202.8258033 224.7105 244.5711 262.908 280.0447 296.204 311.5475];
》y=[5 10 15 20 25 30 35 40 45 50];
2、启动曲线拟合工具箱
》cftool
3、进入曲线拟合工具箱界面“Curve Fitting tool”
(1)点击“Data”按钮,弹出“Data”窗口;
(2)利用X data和Y data的下拉菜单读入数据x,y,可修改数据集名“Data set name”,然后点击“Create data set”按钮,退出“Data”窗口,返回工具箱界面,这时会自动画出数据集的曲线图; book.iLoveM
(3)点击“Fitting”按钮,弹出“Fitting”窗口;
(4)点击“New fit”按钮,可修改拟合项目名称“Fit name”,通过“Data set”下拉菜单选择数据集,然后通过下拉菜单“Type of fit”选择拟合曲线的类型,工具箱提供的拟合类型有:
• Custom Equations:用户自定义的函数类型
• Exponential:指数逼近,有2种类型, a*exp(b*x) 、 a*exp(b*x) + c*exp(d*x)
• Fourier:傅立叶逼近,有7种类型,基础型是 a0 + a1*cos(x*w) + b1*sin(x*w)
• Gaussian:高斯逼近,有8种类型,基础型是 a1*exp(-((x-b1)/c1)^2)
• Interpolant:插值逼近,有4种类型,linear、nearest neighbor、cubic spline、shape-preserving
• Polynomial:多形式逼近,有9种类型,linear ~、quadratic ~、cubic ~、4-9th degree • Power:幂逼近,有2种类型,a*x^b 、a*x^b + c
• Rational:有理数逼近,分子、分母共有的类型是linear ~、quadratic ~、cubic ~、4-5th degree ~;此外,分子还包括constant型
• Smoothing Spline:平滑逼近(翻译的不大恰当,不好意思)
• Sum of Sin Functions:正弦曲线逼近,有8种类型,基础型是 a1*sin(b1*x + c1)
• Weibull:只有一种,a*b*x^(b-1)*exp(-a*x^b)
选择好所需的拟合曲线类型及其子类型,并进行相关设置:
——如果是非自定义的类型,根据实际需要点击“Fit options”按钮,设置拟合算法、修改待估计参数的上下限等参数;
——如果选Custom Equations,点击“New”按钮,弹出自定义函数等式窗口,有“Linear Equations线性等式”和“General Equations构造等式”两种标签。
在本例中选Custom Equations,点击“New”按钮,选择“General Equations”标签,输入函数类型y=a*x*x + b*x,设置参数a、b的上下限,然后点击OK。
(5)类型设置完成后,点击“Apply”按钮,就可以在Results框中得到拟合结果,如下例:
general model:
f(x) = a*x*x+b*x
Coefficients (with 95% confidence bounds):
a = 0.009194 (0.009019, 0.00937)
b = 1.78e-011 (fixed at bound)
Goodness of fit:
SSE: 6.146
R-square: 0.997
Adjusted R-square: 0.997
RMSE: 0.8263
同时,也会在工具箱窗口中显示拟合曲线。
这样,就完成一次曲线拟合啦,十分方便快捷。当然,如果你觉得拟合效果不好,还可以在“Fitting”窗口点击“New fit”按钮,按照步骤(4)~(5)进行一次新的拟合。
不过,需要注意的是,cftool 工具箱只能进行单个变量的曲线拟合,即待拟合的公式中,变量只能有一个。对于混合型的曲线,例如 y = a*x + b/x ,工具箱的拟合效果并不好
§2 插值问题
在应用领域中,由有限个已知数据点,构造一个解析表达式,由此计算数据点之间的函数值,称之为插值。
实例:海底探测问题
某公司用声纳对海底进行测试,在5×5海里的坐标点上测得海底深度的值,希望通过这些有限的数据了解更多处的海底情况。并绘出较细致的海底曲面图。
2、1一元插值
一元插值是对一元数据点(xi,yi)进行插值。
线性插值:由已知数据点连成一条折线,认为相临两个数据点之间的函数值就在这两点之间的连线上。一般来说,数据点数越多,线性插值就越精确。
调用格式:yi=interp1(x,y,xi,’linear’) %线性插值
zi=interp1(x,y,xi,’spline’) %三次样条插值
wi=interp1(x,y,xi,’cubic’) %三次多项式插值
说明:yi、zi、wi为对应xi的不同类型的插值。x、y为已知数据点。
例:已知数据:
x
0
.1
.2
.3
.4
.5
.6
.7
.8
.9
1
y
.3
.5
1
1.4
1.6
1.9
.6
.4
.8
1.5
2
求当xi=0.25时的yi的值。
程序:
x=0:.1:1;
y=[.3 .5 1 1.4 1.6 1 .6 .4 .8 1.5 2];
yi0=interp1(x,y,0.025,'linear')
xi=0:.02:1;
yi=interp1(x,y,xi,'linear');
zi=interp1(x,y,xi,'spline');
wi=interp1(x,y,xi,'cubic');
plot(x,y,'o',xi,yi,'r+',xi,zi,'g*',xi,wi,'k.-')
legend('原始点','线性点','三次样条','三次多项式')
结果:yi0 = 0.3500
要得到给定的几个点的对应函数值,可用:
xi =[ 0.2500 0.3500 0.4500]
yi=interp1(x,y,xi,'spline')
结果:
yi =1.2088 1.5802 1.3454
2、2二元插值
二元插值与一元插值的基本思想一致,对原始数据点(x,y,z)构造见上面函数求出插值点数据(xi,yi,zi)。
一、 一、单调节点插值函数,即x,y向量是单调的。
调用格式1:zi=interp2(x,y,z,xi,yi,’linear’)
‘liner’ 是双线性插值 (缺省)
调用格式2:zi=interp2(x,y,z,xi,yi,’nearest’)
’nearest’ 是最近邻域插值
调用格式3:zi=interp2(x,y,z,xi,yi,’spline’)
‘spline’是三次样条插值
说明:这里x和y是两个独立的向量,它们必须是单调的。z是矩阵,是由x和y确定的点上的值。z和x,y之间的关系是z(i,:)=f(x,y(i)) ,z(:,j)=f(x(j),y) 即:当x变化时,z的第i行与y的第i个元素相关,当y变化时z的第j列与x的第j个元素相关。如果没有对x,y赋值,则默认x=1:n, y=1:m。n和m分别是矩阵z的行数和列数。
例2:已知某处山区地形选点测量坐标数据为:
x=0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
y=0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
海拔高度数据为:
z=89 90 87 85 92 91 96 93 90 87 82
92 96 98 99 95 91 89 86 84 82 84
96 98 95 92 90 88 85 84 83 81 85
80 81 82 89 95 96 93 92 89 86 86
82 85 87 98 99 96 97 88 85 82 83
82 85 89 94 95 93 92 91 86 84 88
88 92 93 94 95 89 87 86 83 81 92
92 96 97 98 96 93 95 84 82 81 84
85 85 81 82 80 80 81 85 90 93 95
84 86 81 98 99 98 97 96 95 84 87
80 81 85 82 83 84 87 90 95 86 88
80 82 81 84 85 86 83 82 81 80 82
87 88 89 98 99 97 96 98 94 92 87
其地貌图为:
对数据插值加密形成地貌图。
程序:
x=0:.5:5;
y=0:.5:6;
z=[89 90 87 85 92 91 96 93 90 87 82
92 96 98 99 95 91 89 86 84 82 84
96 98 95 92 90 88 85 84 83 81 85
80 81 82 89 95 96 93 92 89 86 86
82 85 87 98 99 96 97 88 85 82 83
82 85 89 94 95 93 92 91 86 84 88
88 92 93 94 95 89 87 86 83 81 92
92 96 97 98 96 93 95 84 82 81 84
85 85 81 82 80 80 81 85 90 93 95
84 86 81 98 99 98 97 96 95 84 87
80 81 85 82 83 84 87 90 95 86 88
80 82 81 84 85 86 83 82 81 80 82
87 88 89 98 99 97 96 98 94 92 87];
mesh(x,y,z) %绘原始数据图
xi=linspace(0,5,50); %加密横坐标数据到50个
yi=linspace(0,6,80); %加密纵坐标数据到60个
[xii,yii]=meshgrid(xi,yi); %生成网格数据
zii=interp2(x,y,z,xii,yii,'cubic'); %插值
mesh(xii,yii,zii) %加密后的地貌图
hold on % 保持图形
[xx,yy]=meshgrid(x,y); %生成网格数据
plot3(xx,yy,z+0.1,’ob’) %原始数据用‘O’绘出
2、3二元非等距插值
调用格式:zi=griddata(x,y,z,xi,yi,’指定插值方法’)
插值方法有: linear % 线性插值 (默认)
bilinear % 双线性插值
cubic % 三次插值
bicubic % 双三次插值
nearest % 最近邻域插值
例:用随机数据生成地貌图再进行插值
程序:
x=rand(100,1)*4-2;
y=rand(100,1)*4-2;
z=x.*exp(-x.^2-y.^2);
ti=-2:.25:2;
[xi,yi]=meshgrid(ti,ti); % 加密数据
zi=griddata(x,y,z,xi,yi);% 线性插值
mesh(xi,yi,zi)
hold on
plot3(x,y,z,'o')
该例中使用的数据是随机形成的,故函数griddata可以处理无规则的数据。
展开阅读全文