收藏 分销(赏)

Matlab插值与拟合教程.doc

上传人:s4****5z 文档编号:9444586 上传时间:2025-03-26 格式:DOC 页数:11 大小:252.50KB
下载 相关 举报
Matlab插值与拟合教程.doc_第1页
第1页 / 共11页
Matlab插值与拟合教程.doc_第2页
第2页 / 共11页
点击查看更多>>
资源描述
MATLAB插值与拟合   §1曲线拟合 1. 1.         多项式曲线拟合函数:polyfit( ) 调用格式: p=polyfit(x,y,n) [p,s]= polyfit(x,y,n) 说明:x,y为数据点,n为多项式阶数,返回p为幂次从高到低的多项式系数向量p。矩阵s用于生成预测值的误差估计。(见下一函数polyval) 例:由离散数据 x 0 .1 .2 .3 .4 .5 .6 .7 .8 .9 1 y .3 .5 1 1.4 1.6 1.9 .6 .4 .8 1.5 2 拟合出多项式。 程序: x=0:.1:1; y=[.3 .5 1 1.4 1.6 1.9 .6 .4 .8 1.5 2] n=3; p=polyfit(x,y,n) xi=linspace(0,1,100); z=polyval(p,xi); %多项式求值 plot(x,y,’o’,xi,z,’k:’,x,y,’b’) legend(‘原始数据’,’3阶曲线’) 结果: p = 16.7832 -25.7459 10.9802 -0.0035 多项式为:16.7832x3-25.7459x2+10.9802x-0.0035 曲线拟合图形: 也可由函数给出数据。 例3:x=1:20,y=x+3*sin(x) 程序: x=1:20; y=x+3*sin(x); p=polyfit(x,y,6) xi=1inspace(1,20,100); z=poyval(p,xi); %多项式求值函数 plot(x,y,’o’,xi,z,’k:’,x,y,’b’) legend(‘原始数据’,’6阶曲线’) 结果: p = 0.0000 -0.0021 0.0505 -0.5971 3.6472 -9.7295 11.3304 再用10阶多项式拟合 程序:x=1:20; y=x+3*sin(x); p=polyfit(x,y,10) xi=linspace(1,20,100); z=polyval(p,xi); plot(x,y,'o',xi,z,'k:',x,y,'b') legend('原始数据','10阶多项式') 结果:p = Columns 1 through 7 0.0000 -0.0000 0.0004 -0.0114 0.1814 -1.8065 11.2360 Columns 8 through 11 -42.0861 88.5907 -92.8155 40.2671 可用不同阶的多项式来拟合数据,但也不是阶数越高拟合的越好。 1、2    多项式曲线求值函数:polyval( ) 调用格式: y=polyval(p,x) 说明:y=polyval(p,x)为返回对应自变量x在给定系数P的多项式的值。 1、3   向自定义函数拟合 对于给定的数据,根据经验拟合为带有待定常数的自定义函数。 所用函数:nlinfit( ) 调用格式: [beta,r,J]=nlinfit(X,y,’fun’,betao) 说明:beta返回函数’fun’中的待定常数;r表示残差;J表示雅可比矩阵。X,y为数据;‘fun’自定义函数;beta0待定常数初值。 例:在化工生产中获得的氯气的级分y随生产时间x下降,假定在x≥8时,y与x之间有如下形式的非线性模型: 现收集了44组数据,利用该数据通过拟合确定非线性模型中的待定常数。 x y x y x y 8 0.49 16 0.43 28 0.41 8 0.49 18 0.46 28 0.40 10 0.48 18 0.45 30 0.40 10 0.47 20 0.42 30 0.40 10 0.48 20 0.42 30 0.38 10 0.47 20 0.43 32 0.41 12 0.46 20 0.41 32 0.40 12 0.46 22 0.41 34 0.40 12 0.45 22 0.40 36 0.41 12 0.43 24 0.42 36 0.36 14 0.45 24 0.40 38 0.40 14 0.43 24 0.40 38 0.40 14 0.43 26 0.41 40 0.36 16 0.44 26 0.40 42 0.39 16 0.43 26 0.41 首先定义非线性函数的m文件:model.m function yy=model(beta0,x) a=beta0(1); b=beta0(2); yy=a+(0.49-a)*exp(-b*(x-8)); 程序: x=[8.00 8.00 10.00 10.00 10.00 10.00 12.00 12.00 12.00 14.00 14.00 14.00... 16.00 16.00 16.00 18.00 18.00 20.00 20.00 20.00 20.00 22.00 22.00 24.00... 24.00 24.00 26.00 26.00 26.00 28.00 28.00 30.00 30.00 30.00 32.00 32.00... 34.00 36.00 36.00 38.00 38.00 40.00 42.00]'; y=[0.49 0.49 0.48 0.47 0.48 0.47 0.46 0.46 0.45 0.43 0.45 0.43 0.43 0.44 0.43... 0.43 0.46 0.42 0.42 0.43 0.41 0.41 0.40 0.42 0.40 0.40 0.41 0.40 0.41 0.41... 0.40 0.40 0.40 0.38 0.41 0.40 0.40 0.41 0.38 0.40 0.40 0.39 0.39]'; beta0=[0.30 0.02]; betafit = nlinfit(x,y,'model',beta0) 结果:betafit = 0.3896 0.1011 即:a=0.3896 ,b=0.1011 拟合函数为: 1.4曲线拟合工具箱 curve fitting tollbox 曲线拟合工具箱 book.iLoveM MATLAB有一个功能强大的曲线拟合工具箱 cftool ,使用方便,能实现多种类型的线性、非线性曲线拟合。下面结合我使用的 Matlab R2007b 来简单介绍如何使用这个工具箱。 假设我们要拟合的函数形式是 y=A*x*x + B*x, 且A>0,B>0 。 1、在命令行输入数据: 》x=[110.3323 148.7328 178.064 202.8258033 224.7105 244.5711 262.908 280.0447 296.204 311.5475]; 》y=[5 10 15 20 25 30 35 40 45 50]; 2、启动曲线拟合工具箱 》cftool 3、进入曲线拟合工具箱界面“Curve Fitting tool” (1)点击“Data”按钮,弹出“Data”窗口; (2)利用X data和Y data的下拉菜单读入数据x,y,可修改数据集名“Data set name”,然后点击“Create data set”按钮,退出“Data”窗口,返回工具箱界面,这时会自动画出数据集的曲线图; book.iLoveM (3)点击“Fitting”按钮,弹出“Fitting”窗口; (4)点击“New fit”按钮,可修改拟合项目名称“Fit name”,通过“Data set”下拉菜单选择数据集,然后通过下拉菜单“Type of fit”选择拟合曲线的类型,工具箱提供的拟合类型有: • Custom Equations:用户自定义的函数类型 • Exponential:指数逼近,有2种类型, a*exp(b*x) 、 a*exp(b*x) + c*exp(d*x) • Fourier:傅立叶逼近,有7种类型,基础型是 a0 + a1*cos(x*w) + b1*sin(x*w) • Gaussian:高斯逼近,有8种类型,基础型是 a1*exp(-((x-b1)/c1)^2) • Interpolant:插值逼近,有4种类型,linear、nearest neighbor、cubic spline、shape-preserving • Polynomial:多形式逼近,有9种类型,linear ~、quadratic ~、cubic ~、4-9th degree • Power:幂逼近,有2种类型,a*x^b 、a*x^b + c • Rational:有理数逼近,分子、分母共有的类型是linear ~、quadratic ~、cubic ~、4-5th degree ~;此外,分子还包括constant型 • Smoothing Spline:平滑逼近(翻译的不大恰当,不好意思) • Sum of Sin Functions:正弦曲线逼近,有8种类型,基础型是 a1*sin(b1*x + c1) • Weibull:只有一种,a*b*x^(b-1)*exp(-a*x^b) 选择好所需的拟合曲线类型及其子类型,并进行相关设置: ——如果是非自定义的类型,根据实际需要点击“Fit options”按钮,设置拟合算法、修改待估计参数的上下限等参数; ——如果选Custom Equations,点击“New”按钮,弹出自定义函数等式窗口,有“Linear Equations线性等式”和“General Equations构造等式”两种标签。 在本例中选Custom Equations,点击“New”按钮,选择“General Equations”标签,输入函数类型y=a*x*x + b*x,设置参数a、b的上下限,然后点击OK。 (5)类型设置完成后,点击“Apply”按钮,就可以在Results框中得到拟合结果,如下例: general model: f(x) = a*x*x+b*x Coefficients (with 95% confidence bounds): a = 0.009194 (0.009019, 0.00937) b = 1.78e-011 (fixed at bound) Goodness of fit: SSE: 6.146 R-square: 0.997 Adjusted R-square: 0.997 RMSE: 0.8263 同时,也会在工具箱窗口中显示拟合曲线。 这样,就完成一次曲线拟合啦,十分方便快捷。当然,如果你觉得拟合效果不好,还可以在“Fitting”窗口点击“New fit”按钮,按照步骤(4)~(5)进行一次新的拟合。 不过,需要注意的是,cftool 工具箱只能进行单个变量的曲线拟合,即待拟合的公式中,变量只能有一个。对于混合型的曲线,例如 y = a*x + b/x ,工具箱的拟合效果并不好 §2 插值问题 在应用领域中,由有限个已知数据点,构造一个解析表达式,由此计算数据点之间的函数值,称之为插值。 实例:海底探测问题 某公司用声纳对海底进行测试,在5×5海里的坐标点上测得海底深度的值,希望通过这些有限的数据了解更多处的海底情况。并绘出较细致的海底曲面图。 2、1一元插值 一元插值是对一元数据点(xi,yi)进行插值。 线性插值:由已知数据点连成一条折线,认为相临两个数据点之间的函数值就在这两点之间的连线上。一般来说,数据点数越多,线性插值就越精确。 调用格式:yi=interp1(x,y,xi,’linear’) %线性插值 zi=interp1(x,y,xi,’spline’) %三次样条插值 wi=interp1(x,y,xi,’cubic’) %三次多项式插值 说明:yi、zi、wi为对应xi的不同类型的插值。x、y为已知数据点。 例:已知数据: x 0 .1 .2 .3 .4 .5 .6 .7 .8 .9 1 y .3 .5 1 1.4 1.6 1.9 .6 .4 .8 1.5 2 求当xi=0.25时的yi的值。 程序: x=0:.1:1; y=[.3 .5 1 1.4 1.6 1 .6 .4 .8 1.5 2]; yi0=interp1(x,y,0.025,'linear') xi=0:.02:1; yi=interp1(x,y,xi,'linear'); zi=interp1(x,y,xi,'spline'); wi=interp1(x,y,xi,'cubic'); plot(x,y,'o',xi,yi,'r+',xi,zi,'g*',xi,wi,'k.-') legend('原始点','线性点','三次样条','三次多项式') 结果:yi0 = 0.3500 要得到给定的几个点的对应函数值,可用: xi =[ 0.2500 0.3500 0.4500] yi=interp1(x,y,xi,'spline') 结果: yi =1.2088 1.5802 1.3454 2、2二元插值 二元插值与一元插值的基本思想一致,对原始数据点(x,y,z)构造见上面函数求出插值点数据(xi,yi,zi)。 一、 一、单调节点插值函数,即x,y向量是单调的。 调用格式1:zi=interp2(x,y,z,xi,yi,’linear’) ‘liner’ 是双线性插值 (缺省) 调用格式2:zi=interp2(x,y,z,xi,yi,’nearest’) ’nearest’ 是最近邻域插值 调用格式3:zi=interp2(x,y,z,xi,yi,’spline’) ‘spline’是三次样条插值 说明:这里x和y是两个独立的向量,它们必须是单调的。z是矩阵,是由x和y确定的点上的值。z和x,y之间的关系是z(i,:)=f(x,y(i)) ,z(:,j)=f(x(j),y) 即:当x变化时,z的第i行与y的第i个元素相关,当y变化时z的第j列与x的第j个元素相关。如果没有对x,y赋值,则默认x=1:n, y=1:m。n和m分别是矩阵z的行数和列数。 例2:已知某处山区地形选点测量坐标数据为: x=0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 y=0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 海拔高度数据为: z=89 90 87 85 92 91 96 93 90 87 82 92 96 98 99 95 91 89 86 84 82 84 96 98 95 92 90 88 85 84 83 81 85 80 81 82 89 95 96 93 92 89 86 86 82 85 87 98 99 96 97 88 85 82 83 82 85 89 94 95 93 92 91 86 84 88 88 92 93 94 95 89 87 86 83 81 92 92 96 97 98 96 93 95 84 82 81 84 85 85 81 82 80 80 81 85 90 93 95 84 86 81 98 99 98 97 96 95 84 87 80 81 85 82 83 84 87 90 95 86 88 80 82 81 84 85 86 83 82 81 80 82 87 88 89 98 99 97 96 98 94 92 87 其地貌图为: 对数据插值加密形成地貌图。 程序: x=0:.5:5; y=0:.5:6; z=[89 90 87 85 92 91 96 93 90 87 82 92 96 98 99 95 91 89 86 84 82 84 96 98 95 92 90 88 85 84 83 81 85 80 81 82 89 95 96 93 92 89 86 86 82 85 87 98 99 96 97 88 85 82 83 82 85 89 94 95 93 92 91 86 84 88 88 92 93 94 95 89 87 86 83 81 92 92 96 97 98 96 93 95 84 82 81 84 85 85 81 82 80 80 81 85 90 93 95 84 86 81 98 99 98 97 96 95 84 87 80 81 85 82 83 84 87 90 95 86 88 80 82 81 84 85 86 83 82 81 80 82 87 88 89 98 99 97 96 98 94 92 87]; mesh(x,y,z) %绘原始数据图 xi=linspace(0,5,50); %加密横坐标数据到50个 yi=linspace(0,6,80); %加密纵坐标数据到60个 [xii,yii]=meshgrid(xi,yi); %生成网格数据 zii=interp2(x,y,z,xii,yii,'cubic'); %插值 mesh(xii,yii,zii) %加密后的地貌图 hold on % 保持图形 [xx,yy]=meshgrid(x,y); %生成网格数据 plot3(xx,yy,z+0.1,’ob’) %原始数据用‘O’绘出 2、3二元非等距插值 调用格式:zi=griddata(x,y,z,xi,yi,’指定插值方法’) 插值方法有: linear % 线性插值 (默认) bilinear % 双线性插值 cubic % 三次插值 bicubic % 双三次插值 nearest % 最近邻域插值 例:用随机数据生成地貌图再进行插值 程序: x=rand(100,1)*4-2; y=rand(100,1)*4-2; z=x.*exp(-x.^2-y.^2); ti=-2:.25:2; [xi,yi]=meshgrid(ti,ti); % 加密数据 zi=griddata(x,y,z,xi,yi);% 线性插值 mesh(xi,yi,zi) hold on plot3(x,y,z,'o') 该例中使用的数据是随机形成的,故函数griddata可以处理无规则的数据。
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传
相似文档                                   自信AI助手自信AI助手

当前位置:首页 > 包罗万象 > 大杂烩

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服