资源描述
学科教师辅导讲义
讲义编号_
姓名:张志扬 年 级: 小 五 辅导科目: 数 学
授课日期及时段
2014年 月 日
教学内容 比和比例
基础知识
比的概念是借助除法的概念建立起来的
一、比的意义
1、比的意义:两个数相除又叫做两个数的比。例如:5÷6可记作5:6
2、在两个数的比中,比号“:”前面的数叫做比的前项,比号“:”后面的数叫做比的后项。
比的前项除以后项的商,叫做这个比的比值。如,
比的后项不能为0,因为比的后项相当于除法中的除数,除数不能为0.
注:比和比值的区别
比:表示两个数的倍数关系,可以写成比的形式,也可以用分数表示。有比的前项和比的后项
比值:相当于商,是一个数,是一个结果,可以是整数,分数,也可以是小数。
(二)、比的基本性质
1、根据比、除法、分数的关系:
商不变的性质:被除数和除数同时乘或除以相同的数(0除外),商不变。
分数的基本性质:分数的分子和分母同时乘或除以相同的数时(0除外),分数值不变。
比的基本性质:比的前项和后项同时乘或除以相同的数(0除外),比值不变。
2、最简整数比:比的前项和后项都是整数,并且是互质数,这样的比就是最简整数比。
3、根据比的基本性质,可以把比化成最简单的整数比。
4.化简比:
① 用比的前项和后项同时除以它们的最大公因数。
② 两个分数的比:用前项后项同时乘分母的最小公倍数,再按化简整数比的方法来化简。
③ 两个小数的比:向右移动小数点的位置,先化成整数比再化简。
(三)比例
定义:表示两个比相等的式子叫做比例(式)。如,3∶7=9∶21。判断两个比是否成比例,就要看它们的比值是否相等。两个比的比值相等,这两个比能组成比例,否则不能组成比例。
比例的基本性质:
在任意一个比例中,两个外项的积等于两个内项的积。即:如果a∶b=c∶d,那么a×d=b×c。
连比:两个数的比叫做单比,两个以上的数的比叫做连比。例如a∶b∶c。连比中的“∶”不能用“÷”代替,不能把连比看成连除。把两个比化为连比,关键是使第一个比的后项等于第二个比的前项,方法是把这两项化成它们的最小公倍数。例如甲∶乙=5∶6,乙∶丙=4∶3, 因为[6,4]=12,所以5∶ 6=10∶ 12, 4∶3=12∶9,得到甲∶乙∶丙=10∶12∶9。
(四)按比例分配
将一个总量按照一定的比分成若干个分量叫做按比例分配。按比例分配的方法是将按已知比分配变为按份数分配,把比的各项相加得到总份数,各项与总份数之比就是各个分量在总量中所占的分率,由此可求得各个分量。
课上练习
例1 已知3∶(x-1)=7∶9,求x。
例2 六年级一班的男、女生比例为3∶2,又来了4名女生后,全班共有44人。求现在的男、女生人数之比。
例3 配制一种农药,其中生石灰、硫磺粉和水的重量比是1∶2∶12,现在要配制这种农药2700千克,求各种原料分别需要多少千克
例4 师徒二人共加工零件400个,师傅加工一个零件用9分钟,徒弟加工一个零件用15分钟。完成任务时,师傅比徒弟多加工多少个零件?
例5、某小学四、五、六年级共有学生697人,已知六年级学生的等于五年级学生的,六年级学生的等于四年级学生的。问:四、五、六年级各有多少学生?
课后作业:
1、一块长方形的地,长和宽的比是5∶3,周长是96米,求这块地的面积。
2、一个长方体,长与宽的比是4∶3,宽与高的比是5∶4,体积是450立方厘米。问:长方体的长、宽、高各多少厘米?
3.一把小刀售价6元。如果小明买了这把小刀,那么小明与小强的钱数之比是3∶5;如果小强买了这把小刀,那么小明与小强的钱数之比是9∶11。问:两人原来共有多少钱?
4、甲、乙、丙三人合买一台电视机,甲所付钱数的等于乙所付钱数的,等于丙所付钱数的。已知丙比甲多付了120元,那么这台电视机多少钱?
5.甲、乙、丙三人分138只贝壳,甲每取走5只乙就取走4只,乙每取走5只丙就取走6只。问:最后三人各分到多少只贝壳?
4
展开阅读全文