资源描述
概率与统计
知识要点:
一、随机变量.
1. 随机试验的结构应该是不确定的.试验如果满足下述条件:
①试验可以在相同的情形下重复进行;②试验的所有可能结果是明确可知的,并且不止一个;③每次试验总是恰好出现这些结果中的一个,但在一次试验之前却不能肯定这次试验会出现哪一个结果.
它就被称为一个随机试验.
2. 离散型随机变量:如果对于随机变量可能取的值,可以按一定次序一一列出,这样的随机变量叫做离散型随机变量.若ξ是一个随机变量,a,b是常数.则也是一个随机变量.一般地,若ξ是随机变量,是连续函数或单调函数,则也是随机变量.也就是说,随机变量的某些函数也是随机变量.
设离散型随机变量ξ可能取的值为:
ξ取每一个值的概率,则表称为随机变量ξ的概率分布,简称ξ的分布列.
…
…
P
…
…
有性质①; ②.
注意:若随机变量可以取某一区间内的一切值,这样的变量叫做连续型随机变量.例如:即可以取0~5之间的一切数,包括整数、小数、无理数.
3. ⑴二项分布:如果在一次试验中某事件发生的概率是P,那么在n次独立重复试验中这个事件恰好发生k次的概率是:[其中]
于是得到随机变量ξ的概率分布如下:我们称这样的随机变量ξ服从二项分布,记作~B(n·p),其中n,p为参数,并记.
⑵二项分布的判断与应用.
①二项分布,实际是对n次独立重复试验.关键是看某一事件是否是进行n次独立重复,且每次试验只有两种结果,如果不满足此两条件,随机变量就不服从二项分布.
②当随机变量的总体很大且抽取的样本容量相对于总体来说又比较小,而每次抽取时又只有两种试验结果,此时可以把它看作独立重复试验,利用二项分布求其分布列.
4. 几何分布:“”表示在第k次独立重复试验时,事件第一次发生,如果把k次试验时事件A发生记为,事A不发生记为,那么.根据相互独立事件的概率乘法分式:于是得到随机变量ξ的概率分布列.
1
2
3
…
k
…
P
q
qp
…
…
我们称ξ服从几何分布,并记,其中
二、数学期望与方差.
1. 期望的含义:一般地,若离散型随机变量ξ的概率分布为
…
…
P
…
…
则称为ξ的数学期望或平均数、均值.数学期望又简称期望.数学期望反映了离散型随机变量取值的平均水平.
2. ⑴随机变量的数学期望:
①当时,,即常数的数学期望就是这个常数本身.
②当时,,即随机变量ξ与常数之和的期望等于ξ的期望与这个常数的和.
③当时,,即常数与随机变量乘积的期望等于这个常数与随机变量期望的乘积.
ξ
0
1
P
q
p
⑵单点分布:其分布列为:.
⑶两点分布:,其分布列为:(p + q = 1)
⑷二项分布: 其分布列为~.(P为发生的概率)
⑸几何分布: 其分布列为~.(P为发生的概率)
3.方差、标准差的定义:当已知随机变量ξ的分布列为时,则称为ξ的方差. 显然,故为ξ的根方差或标准差.随机变量ξ的方差与标准差都反映了随机变量ξ取值的稳定与波动,集中与离散的程度.越小,稳定性越高,波动越小.
4.方差的性质.
⑴随机变量的方差.(a、b均为常数)
ξ
0
1
P
q
p
⑵单点分布: 其分布列为
⑶两点分布: 其分布列为:(p + q = 1)
⑷二项分布:
⑸几何分布:
5. 期望与方差的关系.
⑴如果和都存在,则
⑵设ξ和是互相独立的两个随机变量,则
⑶期望与方差的转化: ⑷(因为为一常数).
三、统 计:
1.掌握抽样的二种方法:
(1)简单随机抽样(包括抽签符和随机数表法);
(2)分层抽样,常用于某个总体由差异明显的几部分组成的情形;
2.总体分布的估计:用样本估计总体,是研究统计问题的一个基本思想方法,一般地,样本容量越大,这种估计就越精确,要求能画出频率分布表和频率分布直方图;
典型例题分析:
例1某校有学生2000人,其中高三学生500人.为了解学生的身体素质情况,采用按年级分层抽样的方法,从该校学生中抽取一个200人的样本.则样本中高三学生的人数为___________.
例2某校从参加高一年级期末考试的学生中抽出60名学生,将其成绩(均为整数)分成六段,…后画出如下部分频率分布直方图.观察图形的信息,回答下列问题:
(Ⅰ)求第四小组的频率,并补全这个频率分布直方图;
(Ⅱ)估计这次考试的及格率(60分及以上为及格)
(Ⅲ) 从成绩是70分以上(包括70分)的学生中选两人,
求他们在同一分数段的概率.
例3统计某校1000名学生的数学会考成绩,得到样
本频率分布直方图如右图示,规定不低于60分为
及格,不低于80分为优秀,则及格人数是 ;
优秀率为 。
例4 在生产过程中,测得纤维产品的纤度(表示纤维粗细的一种量)共有100个数据,将数据分组如右表:
分组
频数
合计
(I)在答题卡上完成频率分布表,并在给定的坐标系中画出
频率分布直方图;
(II)估计纤度落在中的概率及纤度小于的概率是多少?
例5、一个社会调查机构就某地居民的月收入调查了10000人,并根据所得数据画了样本的频率分布直方图(如下图)。为了分析居民的收入与年龄、学历、职业等方面的关系,
要从这10000人中再用分层抽样方法抽出100人作进一步调查,则在(元)/月收入段应抽出 人.
例6、在10件产品中有2件次品,连续抽3次,每次抽1件,求:
(1)不放回抽样时,抽到次品数ξ的分布列;
(2)放回抽样时,抽到次品数η的分布列.
例7袋中装有黑球和白球共7个,从中任取2个球都是白球的概率为现有甲、乙两人从袋中轮流摸取1球,甲先取,乙后取,然后甲再取……取后不放回,直到两人中有一人取到白球时既终止,每个球在每一次被取出的机会是等可能的,用表示取球终止所需要的取球次数.
(I)求袋中所有的白球的个数;
(II)求随机变量的概率分布;
(III)求甲取到白球的概率.
例8、从4名男生和2名女生中任选3人参加演讲比赛.设随机变量ξ表示所选3人中女生的人数.
(1)求ξ的分布列;
(2)求ξ的数学期望;
(3)求“所选3人中女生人数ξ≤1”的概率.
例9、A、B两个代表队进行乒乓球对抗赛,每队三名队员,A队队员是A1、A2、A3,B队队员是B1、B2、B3,按以往多次比赛的统计,对阵队员之间胜负概率如下:
对阵队员
A队队员胜的概率
A队队员负的概率
A1对B1
A2对B2
A3对B3
现按表中对阵方式出场,每场胜队得1分,负队得0分.设A队、B队最后所得总分分别为ξ、η.
(1)求ξ、η的概率分布;
(2)求Eξ、Eη.
例10、在一次购物抽奖活动中,假设某10张券中有一等奖券1张,可获价值50元的奖品;有二等奖券3张,每张可获价值10元的奖品;其余6张没有奖。某顾客从此10张券中任抽2张,求:
(1) 该顾客中奖的概率;
(2) 该顾客获得的奖品总价值x (元)的概率分布列和期望Ex。
例11、袋中有20个大小相同的球,其中记上0号的有10个,记上号的有个(=1,2,3,4).现从袋中任取一球.表示所取球的标号.
(Ⅰ)求的分布列,期望和方差;
(Ⅱ)若, ,,试求a,b的值.
例12、随机抽取某厂的某种产品200件,经质检,其中有一等品126件、二等品50件、三等品20件、次品4件.已知生产1件一、二、三等品获得的利润分别为6万元、2万元、1万元,而1件次品亏损2万元.设1件产品的利润(单位:万元)为.
(1)求的分布列;(2)求1件产品的平均利润(即的数学期望);
(3)经技术革新后,仍有四个等级的产品,但次品率降为,一等品率提高为.如果此时要求1件产品的平均利润不小于4.73万元,则三等品率最多是多少?
练习题:
一. 选择题:
1.在5件产品中,有3件一等品和2件二等品,从中任取2件,那么以为概率的事件是
(A)都不是一等品 (B)恰有一件一等品 ( )
(C)至少有一件一等品 (D)至多一件一等品
2. 已知某人在某种条件下射击命中的概率是,他连续射击两次,其中恰有一次射中的概率是 ( )
(A) (B) (C) (D)
3. 9名志愿都中,、、为教师,、、、为医生,、为学生.为组建一个服务小组,需从这9名志愿者中选出教师1名、医生2名、学生1名,则被选中且、最多有1名被选中的概率为
(A) (B) (C) (D)
4. 20名学生,任意分成甲、乙两组,每组10人,其中2名学生干部恰好被分在不同组内的概率是 ( )
A. B. C. D.
5、有A、B两个口袋,A袋装有4个白球,2个黑球;B袋装有3个白球,4个黑球,从A袋、B袋各取2个球交换之后,则A袋中装有4个白球的概率为 ( )
(A) (B) (C) (D)
6.某一批花生种子,如果每1粒发牙的概率为,那么播下4粒种子恰有2粒发芽的概率是( )
A. B. C. D.
7. 4张卡片上分别写有数字1,2,3,4,从这4张卡片中随机抽取2张,则取出的2张卡片上的数字之和为奇数的概率为( )
A. B. C. D.
二. 填空题:
1.一个单位共有职工200人,其中不超过45岁的有120人,超过45岁的有80人.为了调查职工的健康状况,用分层抽样的方法从全体职工中抽取一个容量为25的样本,应抽取超过45岁的职工________________人.
2. 甲、乙、丙三人将参加某项测试,他们能达标的概率分别是0.8、0.6、0.5,则三人都达标的概率是 ,三人中至少有一人达标的概率是 。
3.一个骰子连续投2 次,点数和为4 的概率 .
4. 若某学校要从5名男生和2名女生中选出3人作为上海世博会的志愿者,则选出的志愿者中男女生均不少于1名的概率是 (结果用最简分数表示)。
1. 甲、乙等五名奥运志愿者被随机地分到四个不同的岗位服务,每个岗位至少有一名志愿者.
(Ⅰ)求甲、乙两人同时参加岗位服务的概率;
(Ⅱ)求甲、乙两人不在同一个岗位服务的概率;
(Ⅲ)设随机变量为这五名志愿者中参加岗位服务的人数,求的分布列.
2、设进入某商场的每一位顾客购买甲种商品的概率为,购买乙种商品的概率为,且购买甲种商品与购买乙种商品相互独立,各顾客之间购买商品也是相互独立的。
(Ⅰ)求进入商场的1位顾客购买甲、乙两种商品中的一种的概率;
(Ⅱ)求进入商场的1位顾客至少购买甲、乙两种商品中的一种的概率;
(Ⅲ)记表示进入商场的3位顾客中至少购买甲、乙两种商品中的一种的人数,求的分布列及期望。
3、 为防止风沙危害,某地决定建设防护绿化带,种植杨树、沙柳等植物。某人一次种植了n株沙柳,各株沙柳成活与否是相互独立的,成活率为p,设为成活沙柳的株数,数学期望,标准差为。
(Ⅰ)求n,p的值并写出的分布列;
(Ⅱ)若有3株或3株以上的沙柳未成活,则需要补种,求需要补种沙柳的概率
4、甲乙两队参加奥运知识竞赛,每队3人,每人回答一个问题,答对者为本队赢得一分,
答错得零分。假设甲队中每人答对的概率均为,乙队中3人答对的概率分别为且各人正确与否相互之间没有影响.用ε表示甲队的总得分.求随机变量ε分布列和数学期望;
.
5、甲、乙、丙三人参加了一家公司的招聘面试,面试合格者可正式签约,甲表示只要面试
合格就签约.乙、丙则约定:两人面试都合格就一同签约,否则两人都不签约.设每人面试合格的概率都是,且面试是否合格互不影响.求:(Ⅰ)至少有1人面试合格的概率;(Ⅱ)签约人数的分布列和数学期望.
6、某射击测试规则为:每人最多射击3次,击中目标即终止射击,第次击中目标得分,3次均未击中目标得0分.已知某射手每次击中目标的概率为0.8,其各次射击结果互不影响.
(Ⅰ)求该射手恰好射击两次的概率;
(Ⅱ)该射手的得分记为,求随机变量的分布列及数学期望.
7、某项考试按科目A、科目B依次进行,只有当科目A成绩合格时,才可继续参加科目B的考试.已知每个科目只允许有一次补考机会,两个科目成绩均合格方可获得证 书.现某人参加这项考试,科目A每次考试成绩合格的概率均为,科目B每次考试成绩合格的概率均为.假设各次考试成绩合格与否均互不影响.(Ⅰ)求他不需要补考就可获得证书的概率;
(Ⅱ)在这项考试过程中,假设他不放弃所有的考试机会,记他参加考试的次数为,求的数学期望E.
8、一个袋中有若干个大小相同的黑球、白球和红球。已知从袋中任意摸出1个球,得到黑球的概率是;从袋中任意摸出2个球,至少得到1个白球的概率是。若袋中共有10个球,(1)求白球的个数;
(2)从袋中任意摸出3个球,记得到白球的个数为,求随机变量的数学期望。
9、 某批发市场对某种商品的周销售量(单位:吨)进行统计,最近100周的统计结果如下表所示:
周销售量
2
3
4
频数
20
50
30
(Ⅰ)根据上面统计结果,求周销售量分别为2吨,3吨和4吨的频率;
(Ⅱ)已知每吨该商品的销售利润为2千元,表示该种商品两周销售利润的和(单位:千元).若以上述频率作为概率,且各周的销售量相互独立,求的分布列和数学期望.
8
展开阅读全文