收藏 分销(赏)

二次函数中的存在性问题.doc

上传人:s4****5z 文档编号:9436250 上传时间:2025-03-26 格式:DOC 页数:14 大小:601KB
下载 相关 举报
二次函数中的存在性问题.doc_第1页
第1页 / 共14页
二次函数中的存在性问题.doc_第2页
第2页 / 共14页
点击查看更多>>
资源描述
乐学在线课程: 咨询电话:400-811-6688 二次函数中的存在性问题(讲义) 一、知识点睛 解决“二次函数中存在性问题”的基本步骤: ①____________.研究确定图形,先画图解决其中一种情形. ②____________.先验证①的结果是否合理,再找其他分类,类比第一种情形求解. ③____________.结合点的运动范围,画图或推理,对结果取舍. 二、精讲精练 1. 如图,已知点P是二次函数y=-x2+3x图象在y轴右侧部分上的一个动点,将直线y=-2x沿y轴向上平移,分别交x轴、y轴于A、B两点. 若以AB为直角边的△PAB与△OAB相似,请求出所有符合条件的点P的坐标. 2. 抛物线与y轴交于点A,顶点为B,对称轴BC与x轴交于点C.点P在抛物线上,直线PQ//BC交x轴于点Q,连接BQ. (1)若含45°角的直角三角板如图所示放置,其中一个顶点与点C重合,直角顶点D在BQ上,另一个顶点E在PQ上,求直线BQ的函数解析式; (2)若含30°角的直角三角板的一个顶点与点C重合,直角顶点D在直线BQ上(点D不与点Q重合),另一个顶点E在PQ上,求点P的坐标. 3. 如图,矩形OBCD的边OD、OB分别在x轴正半轴和y轴负半轴上,且OD=10,OB=8.将矩形的边BC绕点B逆时针旋转,使点C恰好与x轴上的点A重合. (1)若抛物线经过A、B两点,则该抛物线的解析式为______________________; (2)若点M是直线AB上方抛物线上的一个动点,作MN⊥x轴于点N.是否存在点M,使△AMN与△ACD相似?若存在,求出点M的坐标;若不存在,说明理由. 4. 已知抛物线经过A、B、C三点,点P(1,k)在直线BC:y=x3上,若点M在x轴上,点N在抛物线上,是否存在以A、M、N、P为顶点的四边形为平行四边形?若存在,请求出点M的坐标;若不存在,请说明理由. 5. 抛物线与y轴交于点C,与直线y=x交于A(-2,-2)、B(2,2)两点.如图,线段MN在直线AB上移动,且,若点M的横坐标为m,过点M作x轴的垂线与x轴交于点P,过点N作x轴的垂线与抛物线交于点Q.以P、M、Q、N为顶点的四边形能否为平行四边形?若能,请求出m的值;若不能,请说明理由. 三、回顾与思考 ____________________________________________________________________________________________________________ ______________________________________________________ 【参考答案】 一、 知识点睛 ① 画图分析 ②分类讨论 ③验证取舍 二、 精讲精练 1.解:由题意,设OA=m,则OB=2m; 当∠BAP=90°时,△BAP∽△AOB或△BAP∽△BOA; ① 若△BAP∽△AOB,如图1, 可知△PMA∽△AOB,相似比为2:1;则P1(5m,2m), 代入,可知, ② 若△BAP∽△BOA,如图2, 可知△PMA∽△AOB,相似比为1:2;则P2(2m,), 代入,可知, 当∠ABP=90°时,△ABP∽△AOB或△ABP∽△BOA; ③ 若△ABP∽△AOB,如图3, 可知△PMB∽△BOA,相似比为2:1;则P3(4m,4m), 代入,可知, ④ 若△ABP∽△BOA,如图4, 可知△PMB∽△BOA,相似比为1:2;则P4(m,), 代入,可知, 2.解:(1)由抛物线解析式可得B点坐标(1,3). 要求直线BQ的函数解析式,只需求得点Q坐标即可,即求CQ长度. 过点D作DG⊥x轴于点G,过点D作DF⊥QP于点F. 则可证△DCG≌△DEF.则DG=DF, ∴矩形DGQF为正方形. 则∠DQG=45°,则△BCQ为等腰直角三角形. ∴CQ=BC=3,此时,Q点坐标为(4,0) 可得BQ解析式为y=-x+4. (2)要求P点坐标,只需求得点Q坐标,然后根据横坐标相同来求点P坐标即可. 而题目当中没有说明∠DCE=30°还是∠DCE=60°,所以分两种情况来讨论. ① 当∠DCE=30°时, a)过点D作DH⊥x轴于点H,过点D作DK⊥QP于点K. 则可证△DCH∽△DEK. 则, 在矩形DHQK中,DK=HQ,则. 在Rt△DHQ中,∠DQC=60°. 则在Rt△BCQ中, ∴CQ=,此时,Q点坐标为(1+,0) 则P点横坐标为1+.代入可得纵坐标. ∴P(1+,). b)又P、Q为动点,∴可能PQ在对称轴左侧,与上一种情形关于对称轴对称. 由对称性可得此时点P坐标为(1-,) ② 当∠DCE=60°时, a) 过点D作DM⊥x轴于点M,过点D作DN⊥QP于点N. 则可证△DCM∽△DEN.则, 在矩形DMQN中,DN=MQ, 则. 在Rt△DMQ中,∠DQM=30°. 则在Rt△BCQ中, ∴CQ=BC=,此时,Q点坐标为(1+,0) 则P点横坐标为1+.代入可得纵坐标. ∴P(1+,). b)又P、Q为动点,∴可能PQ在对称轴左侧,与上一种情形关于对称轴对称. 由对称性可得此时点P坐标为(1-,) 综上所述,P点坐标为(1+,),(1-,),(1+,)或(1-,). 3.解:(1)∵AB=BC=10,OB=8 ∴在Rt△OAB中,OA=6 ∴ A(6,0) 将A(6,0),B(0,-8)代入抛物线表达式,得, (2)存在: 如果△AMN与△ACD相似,则或 设M(0<m<6) 1) 假设点M在x轴下方的抛物线上,如图1所示: 当时,,即 ∴ ∴ 如图2验证一下: 当时,,即 ∴(舍) 2)如果点M在x轴上方的抛物线上: 当时,,即 ∴ ∴M 此时, ∴ ∴△AMN∽△ACD ∴M满足要求 当时,,即 ∴m=10(舍) 综上M1,M2 4.解:满足条件坐标为: 思路分析:A、M、N、P四点中点A、点P为顶点,则AP可为平行四边形边、对角线; (1)如图,当AP为平行四边形边时,平移AP; ∵点A、P纵坐标差为2 ∴点M、N纵坐标差为2; ∵点M的纵坐标为0 ∴点N的纵坐标为2或-2 ①当点N的纵坐标为2时 解: 得 又∵点A、P横坐标差为2 ∴点M的坐标为: 、 ②当点N的纵坐标为-2时 解: 得 又∵点A、P横坐标差为2 ∴点M的坐标为: 、 (2)当AP为平行四边形边对角线时; 设M5(m,0) MN一定过AP的中点(0,-1) 则N5(-m,-2) N5在抛物线上 ∴ (负值不符合题意,舍去) ∴ ∴ 综上所述: 符合条件点P的坐标为: 5.解:分析题意,可得:MP∥NQ,若以P、M、N、Q为顶点的四边形为平行四边形,只需MP=NQ即可 由题知:,,, 故只需表达MP、NQ即可.表达分下列四种情况: ①如图1,,,令PM=QN, 解得:(舍去),; ②如图2,,,令PM=QN, 解得:(舍去),; ③如图3,,,令PM=QN, 解得:,(舍去); ④如图4,,,令PM=QN, 解得:,(舍去); 综上,m的值为、、、. 14
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传
相似文档                                   自信AI助手自信AI助手

当前位置:首页 > 教育专区 > 其他

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服