资源描述
§1.2应用举例—③测量角度
学习目标
能够运用正弦定理、余弦定理等知识和方法解决一些有关计算角度的实际问题.
学习过程
一、课前准备
复习1:在中,已知,,且,求.
复习2:设的内角A,B,C的对边分别为a,b,c,且A=,,求的值.
二、新课导学
※ 典型例题
例1. 如图,一艘海轮从A出发,沿北偏东75的方向航行67.5 n mile后到达海岛B,然后从B出发,沿北偏东32的方向航行54.0 n mile后达到海岛C.如果下次航行直接从A出发到达C,此船应该沿怎样的方向航行,需要航行多少距离?(角度精确到0.1,距离精确到0.01n mile)
分析:
首先由三角形的内角和定理求出角ABC,
然后用余弦定理算出AC边,
再根据正弦定理算出AC边和AB边的夹角CAB.
例2. 某巡逻艇在A处发现北偏东45相距9海里的C处有一艘走私船,正沿南偏东75的方向以10海里/小时的速度向我海岸行驶,巡逻艇立即以14海里/小时的速度沿着直线方向追去,问巡逻艇应该沿什么方向去追?需要多少时间才追赶上该走私船?
※ 动手试试
练1. 甲、乙两船同时从B点出发,甲船以每小时10(+1)km的速度向正东航行,乙船以每小时20km的速度沿南60°东的方向航行,1小时后甲、乙两船分别到达A、C两点,求A、C两点的距离,以及在A点观察C点的方向角.
练2. 某渔轮在A处测得在北45°的C处有一鱼群,离渔轮9海里,并发现鱼群正沿南75°东的方向以每小时10海里的速度游去,渔轮立即以每小时14海里的速度沿着直线方向追捕,问渔轮应沿什么方向,需几小时才能追上鱼群?
三、总结提升
※ 学习小结
1. 已知量与未知量全部集中在一个三角形中,依次利用正弦定理或余弦定理解之.;
2.已知量与未知量涉及两个或几个三角形,这时需要选择条件足够的三角形优先研究,再逐步在其余的三角形中求出问题的解.
※ 知识拓展
已知ABC的三边长均为有理数,A=,B=,则是有理数,还是无理数?
因为,由余弦定理知
为有理数,
所以为有理数.
学习评价
※ 自我评价 你完成本节导学案的情况为( ).
A. 很好 B. 较好 C. 一般 D. 较差
※ 当堂检测(时量:5分钟 满分:10分)计分:
1. 从A处望B处的仰角为,从B处望A处的俯角为,则,的关系为( ).
A. B.=
C.+= D.+=
2. 已知两线段,,若以、为边作三角形,则边所对的角A的取值范围是( ).
A. B.
C. D.
3. 关于的方程有相等实根,且A、B、C是的三个内角,则三角形的三边满足( ).
A. B.
C. D.
4. △ABC中,已知a:b:c=(+1) :(-1): ,则此三角形中最大角的度数为 .
5. 在三角形中,已知:A,a,b给出下列说法:
(1)若A≥90°,且a≤b,则此三角形不存在
(2)若A≥90°,则此三角形最多有一解
(3)若A<90°,且a=bsinA,则此三角形为直角三角形,且B=90°
(4)当A<90°,a<b时三角形一定存在
(5)当A<90°,且bsinA<a<b时,三角形有两解
其中正确说法的序号是 .
课后作业
我舰在敌岛A南偏西相距12海里的B处,发现敌舰正由岛沿北偏西的方向以10海里/小时的速度航行.问我舰需以多大速度、沿什么方向航行才能用2小时追上敌舰?
3 / 3
展开阅读全文