收藏 分销(赏)

(文章)如何证明圆的切线.doc

上传人:xrp****65 文档编号:9389184 上传时间:2025-03-24 格式:DOC 页数:2 大小:39.50KB 下载积分:10 金币
下载 相关 举报
(文章)如何证明圆的切线.doc_第1页
第1页 / 共2页
(文章)如何证明圆的切线.doc_第2页
第2页 / 共2页
本文档共2页,全文阅读请下载到手机保存,查看更方便
资源描述
如何证明圆的切线 证明直线是圆的切线,通常有的两种方法: 一、要证明某直线是圆的切线,如果已知直线过圆上的某一个点,那么作出过这一点的半径,证明直线垂直于半径. 【例1】如图1,已知AB为⊙O的直径,点D在AB的延长线上,BD=OB,点C在圆上,∠CAB=30º.求证:DC是⊙O的切线. 图1 O A B C D 思路:要想证明DC是⊙O的切线,只要我们连接OC,证明∠OCD=90º即可. 证明:连接OC,BC. ∵AB为⊙O的直径,∴∠ACB=90º. ∵∠CAB=30º,∴BC=AB=OB. ∵BD=OB,∴BC=OD.∴∠OCD=90º. ∴DC是⊙O的切线. 【评析】一定要分清圆的切线的判定定理的条件与结论,特别要注意“经过半径的外端”和“垂直于这条半径”这两个条件缺一不可,否则就不是圆的切线.本题在证明∠OCD=90º时,运用了“在一个三角形中,如果一条边上的中线等于这条边的一半,那么这个三角形是直角三角形”,当然也可以从角度计算的角度来求∠OCD=90º. 二、如果直线与圆的公共点没有确定,则应过圆心作直线的垂线,证明圆心到这条直线的距离等于半径. 图2 O A B C E D 【例2】如图2,已知OC平分∠AOB,D是OC上任意一点,⊙D与OA相切于点E.求证:OB与⊙D相切. 思路:连接DE,过点D作DF⊥OB于点F,证明DE=DF即可,这可由角平分线上的点到角两边的距离相等证得. 请同学们写出证明过程. 【评析】一定要防止出现错将圆上的一点当作公共点而连接出半径.同学们一定要认真体会证明切线时常用的这两种方法,作辅助线时一定要注意表述的正确性. 图3 O A B C D 2 3 1 【例3】如图3,已知AB为⊙O的直径,C为⊙O上一点,AD和过C点的切线互相垂直,垂足为D.求证:AC平分∠DAB. 思路:利用圆的切线的性质——与圆的切线垂直于过切点的半径. 证明:连接OC. ∵CD是⊙O的切线,∴OC⊥CD. ∵AD⊥CD,∴OC∥AD.∴∠1=∠2. ∵OC=OA,∴∠1=∠3.∴∠2=∠3. ∴AC平分∠DAB. 【评析】O A B C D 图4 2 3 4 1 已知一条直线是某圆的切线时,切线的位置一般是确定的.在解决有关圆的切线问题时,辅助线常常是连接圆心与切点,得到半径,那么半径垂直切线. 【例4】如图4,已知AB为⊙O的直径,过点B作⊙O的切线BC,连接OC,弦AD∥OC.求证:CD是⊙O的切线. 思路:本题中既有圆的切线是已知条件,又证明另一条直线是圆的切线.也就是既要注意运用圆的切线的性质定理,又要运用圆的切线的判定定理.欲证明CD是⊙O的切线,只要证明∠ODC=90º即可. 证明:连接OD. ∵OC∥AD,∴∠1=∠3,∠2=∠4. ∵OA=OD,∴∠1=∠2.∴∠3=∠4. 又∵OB=OD,OC=OC, ∴△OBC≌△ODC.∴∠OBC=∠ODC. ∵BC是⊙O的切线,∴∠OBC=90º.∴∠ODC=90º. ∴DC是⊙O的切线. 【评析】本题综合运用了圆的切线的性质与判定定理.一定要注意区分这两个定理的题设与结论,注意在什么情况下可以用切线的性质定理,在什么情况下可以用切线的判定定理.希望同学们通过本题对这两个定理有进一步的认识.本题若作OD⊥CD,就判断出了CD与⊙O相切,这是错误的.这样做相当于还未探究、判断,就以经得出了结论,显然是错误的.
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传

当前位置:首页 > 教育专区 > 其他

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服