资源描述
初中在线
课题:实数复习(39课时)
一、知识结构
乘方开方
二、知识回顾
算术平方根的定义:
平方根的定义:
平方根的性质:
立方根的定义:
立方根的性质:
练习:1、—8是 的平方根; 64的平方根是 ; ;
—64的立方根是 ; ; 的平方根是 。
2、大于而小于的所有整数为
几个基本公式:(注意字母的取值范围)
= ; = = ; = ; =
练习:;
无理数的定义:
实数的定义:
实数与 上的点是一一对应的
练习:1、判断下列说法是否正确:
1.实数不是有理数就是无理数。 ( )
2.无限小数都是无理数。 ( )
3.无理数都是无限小数。 ( )
4.带根号的数都是无理数。 ( )
5.两个无理数之和一定是无理数。 ( )
6.所有的有理数都可以在数轴上表示,反过来,数轴上所有的点都表示有理数。 ( )
7.平面直角坐标系中的点与有序实数对之间是一一对应的。( )
2、把下列各数中,有理数为 ;无理数为
(相邻两个3之间的7逐渐加1个)
三、知识巩固1、取何值时,下列各式有意义
(1) : ;(2): ;(3):
2、
四、知识提高
1、已知,,(1) ;(2) ;
(3)0.03的平方根约为 ;(4)若,则
练习:已知,,,求(1) ;
(2)3000的立方根约为 ;(3),则
2、若,则的取值范围是
3、已知位置如图所示,
试化简 :(1) (2)
4、已知的小数部分为,的小数部分为,则
五、当堂反馈
1、下列说法正确的是( )
A、的平方根是 B、表示6的算术平方根的相反数
C、 任何数都有平方根 D、一定没有平方根
2、若,则
3、若,则的取值范围是 ;,则的取值范围是
4、已知,求的平方根
5、已知等腰三角形的两边长满足,求三角形的周长
6、如果一个数的平方根是和,求这个数
(选作)1、若为实数,则下列命题正确的是( )
A、 B、
C、 D、
2、已知,求的值。
第十三章 实数复习(40课时)
一.典例分析
【 例1 】把下列各数填入相应的集合中(只填序号):
①3.14 ② ③ ④ ⑤0 ⑥ ⑦ ⑧0.15
有理数集合:{ …}正数集合{ …}
无理数集合:{ …}负数集合{ …}
分数集合:{ …}
【 例2 】计算:(1) (2)
二、检测:
1.25的平方根是( )
A、5 B、-5 C、±5 D、
2.下列说法错误的是 ( )
A、无理数的相反数还是无理数 B、无限小数都是无理数
C、正数、负数统称有理数 D、实数与数轴上的点一一对应
3.下列各组数中互为相反数的是( )
A、 -2与 B、 -2与 C、 -2与 D、与2
4.在下列各数:、、、、、、中,无理数的个数是 ( )A、2 B、3 C、4 D、5
5.满足的整数是( )
A、 B、 C、 D、
6.当的值为最小值时, 的取值为( )
A、-1 B、0 C、 D、1
7.如图,线段、,那么,线段EF的长度为( )
A、 B、 C、 D、
8.的平方根是, 64的立方根是,则的值为( )
A、3 B、7 C、3或7 D、1或7
9.平方根等于本身的实数是 。
10.化简: 。
11.的平方根是 ;的算术平方根是 ;125的立方根是 。
12.估计的大小约等于 或 (误差小于1)。
13.若,则= 。
14.比较下列实数的大小(在 填上 > 、< 或 =)
① ; ② ; ③ 。
15.计算(1) (2)
16.若x、y都是实数,且y= 求x+y的值。新课标第一网
初中在线
展开阅读全文