资源描述
选修2-3全册平时测试(三)
一、选择题(每小题5分,共60分)
1.将标号为1,2,3,4,5,6的6张卡片放入3个不同的信封中,若每个信封放2张,其中标号为1,2的卡片放入同一信封,则不同的放法共有( )
A.12种 B.18种 C.36种 D.54种
2.在x(1+x)6的展开式中,含x3项的系数为( )
A.30 B.20 C.15 D.10
3.某展览会一周(七天)内要接待三所学校学生参观,每天只安排一所学校,其中甲学校要连续参观两天,其余学校均参观一天,则不同的安排方法的种数是( )
A.210 B.50 C.60 D.120
4.若随机变量ξ~N(-2,4),则ξ在区间(-4,-2]上取值的概率等于ξ在下列哪个区间上取值的概率( )
A.(2,4] B.(0,2] C.[-2,0) D.(-4,4]
5.变量X与Y相对应的一组数据为(10,1)、(11.3,2)、(11.8,3)、(12.5,4)、(13,5);变量U与V相对应的一组数据为(10,5)、(11.3,4)、(11.8,3)、(12.5,2)、(13,1).r1表示变量Y与X之间的线性相关系数,r2表示变量V与U之间的线性相关系数,则( )
A.r2<r1<0 B.0<r2<r1 C.r2<0<r1 D.r2=r1
6.现安排甲、乙、丙、丁、戊5名同学参加上海世博会志愿者服务活动,每人从事翻译、导游、礼仪、司机四项工作之一,每项工作至少有一人参加.甲、乙不会开车但能从事其他三项工作,丙、丁、戊都能胜任四项工作,则不同安排方案的种数是( )
A.152 B.126 C.90 D.54
7.设a=(sinx+cosx)dx,则二项式(a-)6展开式中含x2项的系数是( )
A.192 B.-192 C.96 D.-96
8.给出下列实际问题:
①一种药物对某种病的治愈率;②两种药物冶疗同一种病是否有区别;③吸烟者得肺病的概率;④吸烟人群是否与性别有关系;⑤网吧与青少年的犯罪是否有关系.其中,用独立性检验可以解决的问题有( )
A.①②③ B.②④⑤ C.②③④⑤ D.①②③④⑤
9.从装有3个黑球和3个白球(大小、形状相同)的盒子中随机摸出3个球,用ξ表示摸出的黑球个数,则P(ξ≥2)的值为( )
A. B. C. D.
10.甲、乙、丙三位学生用计算机联网学习数学,每天上课后独立完成6道自我检测题,甲及格的概率为,乙及格的概率为,丙极格的概率为,三人各答一次,则三人中只有一人及格的概率为( )
A. B. C. D.以上都不对
11.(1-)6(1+)4的展开式中x的系数是( )
A.-4 B.-3 C.3 D.4
12.在某种信息传输过程中,用4个数字的一个排列(数字允许重复)表示一个信息,不同排列表示不同信息,若所用数字只有0和1,则与信息0110至多有两个对应位置上的数字相同的信息个数为( )
(A)10 (B)11 (C)12 (D)15
二、填空题(每小题5分,共20分)
13.设(x-1)21=a0+a 1x+a 2x2+…+a21x21,则a10+a11=________.
14.已知ξ的分布列为:
ξ
1
2
3
4
P
则D(ξ)等于____________.
15.对于回归方程y=4.75x+2.57,当x=28时,y的估计值是____________.
16.某艺校在一天的6节课中随机安排语文、数学、外语三门文化课和其它三门艺术课各1节,则在课表上的相邻两节文化课之间最多间隔1节艺术课的概率为________(用数字作答).
三、解答题(本大题共5个小题,共60分,解答应写出文字说明、证明过程或演算步骤)
17.(本题满分12分)已知的展开式中第五项的系数与第三项的系数比是10:1,求展开式中含x的项.
推销员编号
1
2
3
4
5
工作年限x/年
3
5
6
7
9
推销金额Y/万元
2
3
3
4
5
18.(本题满分12分)某电脑公司有6名产品推销员,其中5名的工作年限与年推销金额数据如下表:
(1)求年推销金额Y关于工作年限x的线性回归方程;
(2)若第6名推销员的工作年限为11年,试估计他的年推销金额.
20.(本题满分12分)某研究机构举行一次数学新课程研讨会,共邀请50名一线教师参加,使用不同版本教材的教师人数如表所示:
版本
人教A版
人教B版
苏教版
北师大版
人数
20
15
5
10
(1)从这50名教师中随机选出2名,求2人所使用版本相同的概率;
(2)若随机选出2名使用人教版的教师发言,设使用人教A版的教师人数为ξ,求随机变量ξ的分布列.
21.(本题满分12分)在一块耕地上种植一种作物,每季种植成本为1000元,此作物的市场价格和这块地上的产量均具有随机性,且互不影响,其具体情况如下表:
作物产量(kg)
300
500
概率
0.5
0.5
作物市场价格(元/kg)
6
10
概率
0.4
0.6
(1)设X表示在这块地上种植1季此作物的利润,求X的分布列;
(2)若在这块地上连续3季种植此作物,求这3季中至少有2季的利润不少于2000元的概率.
22.(本题满分12分)学校校园活动有这样一个游戏项目:甲箱子里装有3个白球、2个黑球,乙箱子里装有1个白球、2个黑球,这些球除颜色外完全相同,每次游戏从这两个箱子里各随机摸出2个球,若摸出的白球不少于2个,则获奖.(每次游戏结束后将球放回原箱)
(1)求在1次游戏中,
①摸出3个白球的概率;
②获奖的概率.
(2)求在2次游戏中获奖次数X的分布列及数学期望E(X).
展开阅读全文