资源描述
1.反比例函数y=的图象如图所示,则k的值可能是( )
A. -1 B. C.1 D.2
2.如图,一次函数y1=x+1的图象与反比例函数y2= 的图象交于A、B两点,过点作AC⊥x轴于点C,过点B作BD⊥x轴于点D,连接AO、BO,下列说法正确的是( )
A.点A和点B关于原点对称
B.当x<1时,y1>y2
C.S△AOC=S△BOD
D.当x>0时,y1、y2都随x的增大而增大
3.如图,已知△ABC三个顶点的坐标分别为(1,2),(-2,3),(-1,0),把它们的横坐标和纵坐标都扩大到原来的2倍,得到点A′,B′,C′.下列说法正确的是( )
A.△A′B′C′与△ABC是位似图形,位似中心是点(1,0)
B.△A′B′C′与△ABC是位似图形,位似中心是点(0,0)
C.△A′B′C′与△ABC是相似图形,但不是位似图形
D.△A′B′C′与△ABC不是相似图形
4.如图,AD∥BC,∠D=90°,DC=7,AD=2,BC=4.若在边DC上有点P使△PAD和△PBC相似,则这样的点P存在的个数有( )
A.1 B.2 C.3 D.4
5.如图,在平行四边形ABCD中,E是CD上的一点,DE:EC=2:3,连接AE、BE、BD,且AE、BD交于点F,则S△DEF:S△EBF:S△ABF=( )
A.2:5:25 B.4:9:25
C.2:3:5 D.4:10:25
6.如图,ABCD是正方形,G是BC上(除端点外)的任意一点,DE⊥AG于点E,BF∥DE,交AG于点F.下列结论不一定成立的是( )
A.△AED≌△BFA B.DE-BF=EF
C.△BGF∽△DAE D.DE-BG=FG
7.(2012•茂名)如图,四边形ABCD四边的中点分别为E,F,G,H,对角线AC与BD相交于点O,若四边形EFGH的面积是3,则四边形ABCD的面积是( )
A.3 B.6 C.9 D.12
8.(2011•遵义)如图,在直角三角形ABC中(∠C=90°),放置边长分别3,4,x的三个正方形,则x的值为( )
A.5 B.6 C.7 D.12
9.如图,直线y=-x+b与双曲线y= (x>0)交于A、B两点,与x轴、y轴分别交于E、F两点,连接OA、OB,若S△AOB=S△OBF+S△OAE,则b=________
10.如图,平行四边形ABCD的顶点A、C在双曲线y1= 上,B、D在双曲线y2= 上,k1=2k2(k1>0),AB∥y轴,S▱ABCD=24,则k1=________
11.如图,在正方形ABCD中,E是CD的中点,点F在BC上,且FC= BC.图中相似三角形共有________对
12.(2012•邵阳)如图所示,直线y=x+b与x轴相交于点A(4,0),与y轴相交于点B,将△AOB沿着y轴折叠,使点A落在x轴上,点A的对应点为点C.
(1)求点C的坐标;
(2)设点P为线段CA上的一个动点,点P与点A、C不重合,连接PB,以点P为端点作射线PM交AB于点M,使∠BPM=∠BAC
①求证:△PBC∽△MPA;
②是否存在点P使△PBM为直角三角形?若存在,请求出点P的坐标;若不存在,请说明理由.
13. 如图,已知A(8,0),B(0,6),两个动点P、Q同时在△OAB的边上按逆时针方向(→O→A→B→O→)运动,开始时点P在点B位置,点Q在点O位置,点P的运动速度为每秒2个单位,点Q的运动速度为每秒1个单位.
(1)在前3秒内,求△OPQ的面积与t的函数关系式;
(2)在前10秒内,求P、Q两点之间的最小距离,并求此时点P、Q的坐标;
(3)在前15秒内,探究PQ平行于△OAB一边的情况,并求平行时点P、Q的坐标.
14. 请阅读下列材料:
问题:如图1,在菱形和菱形中,点在同一条直线上,是线段的中点,连结.若,探究与的位置关系及的值.
D
C
G
P
A
B
E
F
图2
D
A
B
E
F
C
P
G
图1
小聪同学的思路是:延长交于点,构造全等三角形,经过推理使问题得到解决.
请你参考小聪同学的思路,探究并解决下列问题:
(1)写出上面问题中线段与的位置关系及的值;
(2)将图1中的菱形绕点顺时针旋转,使菱形的对角线恰好与菱形的边在同一条直线上,原问题中的其他条件不变(如图2).你在(1)中得到的两个结论是否发生变化?写出你的猜想并加以证明.
(3)若图1中,将菱形绕点顺时针旋转任意角度,原问题中的其他条件不变,请你直接写出的值(用含的式子表示).
展开阅读全文