收藏 分销(赏)

奥数提高班第一讲有理数的巧算(含答案).doc

上传人:pc****0 文档编号:9271682 上传时间:2025-03-19 格式:DOC 页数:6 大小:71.50KB 下载积分:10 金币
下载 相关 举报
奥数提高班第一讲有理数的巧算(含答案).doc_第1页
第1页 / 共6页
奥数提高班第一讲有理数的巧算(含答案).doc_第2页
第2页 / 共6页


点击查看更多>>
资源描述
第一讲 有理数的巧算 有理数运算是中学数学中一切运算的基础.它要求同学们在理解有理数的有关概念、法则的基础上,能根据法则、公式等正确、迅速地进行运算.不仅如此,还要善于根据题目条件,将推理与计算相结合,灵活巧妙地选择合理的简捷的算法解决问题,从而提高运算能力,发展思维的敏捷性与灵活性.   1.括号的使用     在代数运算中,可以根据运算法则和运算律,去掉或者添上括号,以此来改变运算的次序,使复杂的问题变得较简单.   例1 计算下式的值:   211×555+445×789+555×789+211×445.       例2 在数1,2,3,…,1998前添符号“+”和“-”,并依次运算,所得可能的最小非负数是多少?       2.用字母表示数   我们先来计算(100+2)×(100-2)的值:   这是一个对具体数的运算,若用字母a代换100,用字母b代换2,上述运算过 程变为(a+b)(a-b)=___________   于是我们得到了一个重要的计算公式____________________________   这个公式叫___________公式,以后应用这个公式计算时,不必重复公式的证明 过程,可直接利用该公式计算.    例3 计算 3001×2999的值. 练习1 计算 103×97×10 009的值. 练习2 计算:       练习3 计算:(2+1)(22+1)(24+1)(28+1)(216+1)(232+1).       练习4 计算:  .          3.观察算式找规律   例4 某班20名学生的数学期末考试成绩如下,请计算他们的总分与平均分.   87,91,94,88,93,91,89,87,92,86,90,92,88,90,91,86,89,92,95,88.      例5 计算1+3+5+7+…+1997+1999的值.      例6 计算 1+5+52+53+…+599+5100的值.      例7 计算:    练习一 1.计算下列各式的值:   (1)-1+3-5+7-9+11-…-1997+1999;   (2)11+12-13-14+15+16-17-18+…+99+100;   (3)1991×1999-1990×2000;   (4)4726342+472 6352-472 633×472 635-472 634×472 636;     (6)1+4+7+…+244;      2.某小组20名同学的数学测验成绩如下,试计算他们的平均分.   81,72,77,83,73,85,92,84,75,63,76,97,80,90,76,91,86,78,74,85. 第一讲 有理数的巧算答案   例1 计算下式的值:   211×555+445×789+555×789+211×445.   分析 直接计算很麻烦,根据运算规则,添加括号改变运算次序,可使计算简单.本题可将第 一、第四项和第二、第三项分别结合起来计算.   解 原式=(211×555+211×445)+(445×789+555×789)       =211×(555+445)+(445+555)×789       =211×1000+1000×789       =1000×(211+789)       =1 000 000.   说明 加括号的一般思想方法是“分组求和”,它是有理数巧算中的常用技巧. 例2 在数1,2,3,…,1998前添符号“+”和“-”,并依次运算,所得可能的最小非负数是多少?   分析与解 因为若干个整数和的奇偶性,只与奇数的个数有关,所以在1,2,3,…,1998之前任意添加符号“+”或“-”,不会改变和的奇偶性.在1,2,3,…,1998中有1998÷2个奇数,即有999个奇数,所以任意添加符号“+”或“-”之后,所得的代数和总为奇数,故最小非负数不小于1.   现考虑在自然数n,n+1,n+2,n+3之间添加符号“+”或“-”,显然 n-(n+1)-(n+2)+(n+3)=0.   这启发我们将1,2,3,…,1998每连续四个数分为一组,再按上述规则添加符号,即 (1-2-3+4)+(5-6-7+8)+…+(1993-1994-1995+1996)-1997+1998=1.   所以,所求最小非负数是1.   说明 本例中,添括号是为了造出一系列的“零”,这种方法可使计算大大简化. 例3 计算 3001×2999的值.   解 3001×2999=(3000+1)(3000-1)=30002-12=8 999 999. 例4 某班20名学生的数学期末考试成绩如下,请计算他们的总分与平均分.   87,91,94,88,93,91,89,87,92,86,90,92,88,90,91,86,89,92,95,88. 分析与解 若直接把20个数加起来,显然运算量较大,粗略地估计一下,这些数均在90上下,所以可取90为基准数,大于90的数取“正”,小于90的数取“负”,考察这20个数与90的差,这样会大大简化运算.所以总分为90×20+(-3)+1+4+(-2)+3+1+(-1)+(-3)+2+(-4)+0+2+(-2)+0+1+(-4)+(-1)+2+5+(-2) =1800-1=1799,   平均分为 90+(-1)÷20=89.95.      例5 计算1+3+5+7+…+1997+1999的值.   分析 观察发现:首先算式中,从第二项开始,后项减前项的差都等于2;其次算式中首末两项之和与距首末两项等距离的两项之和都等于2000,于是可有如下解法.   解 用字母S表示所求算式,即 S=1+3+5+…+1997+1999. ①    再将S各项倒过来写为 S=1999+1997+1995+…+3+1. ②    将①,②两式左右分别相加,得   2S=(1+1999)+(3+1997)+…+(1997+3)+(1999+1)    =2000+2000+…+2000+2000(500个2000)    =2000×500. 从而有 S=500 000. 例6 计算 1+5+52+53+…+599+5100的值.   分析 观察发现,上式从第二项起,每一项都是它前面一项的5倍.如果将和式各项都乘以5,所得新和式中除个别项外,其余与原和式中的项相同,于是两式相减将使差易于计算.    解 设S=1+5+52+…+599+5100, ①    所以 5S=5+52+53+…+5100+5101. ②    ②—①得 4S=5101-1,          例7 计算:                分析 一般情况下,分数计算是先通分.本题通分计算将很繁,所以我们不但不通分,反而利用如下一个关系式 来把每一项拆成两项之差,然后再计算,这种方法叫做拆项法.   解 由于        所以        说明 本例使用拆项法的目的是使总和中出现一些可以相消的相反数的项,这种方法在有理数巧算中很常用.
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传

当前位置:首页 > 教育专区 > 其他

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服