资源描述
学案35 合情推理与演绎推理
导学目标: 1.了解合情推理的含义,能利用归纳和类比等进行简单的推理,了解合情推理在数学发现中的作用.2.了解演绎推理的重要性,掌握演绎推理的基本模式,并能运用它们进行一些简单推理.3.了解合情推理和演绎推理之间的联系和差异.
自主梳理
自我检测
1.(2010·山东改编)观察(x2)′=2x,(x4)′=4x3,(cos x)′=-sin x,由归纳推理可得:若定义在R上的函数f(x)满足f(-x)=f(x),记g(x)为f(x)的导函数,则g(-x)=________.
2.(2010·珠海质检)给出下面类比推理命题(其中Q为有理数集,R为实数集,C为复数集):
①“若a,b∈R,则a-b=0⇒a=b”类比推出“若a,b∈C,则a-b=0⇒a=b”;
②“若a,b,c,d∈R,则复数a+bi=c+di⇒a=c,b=d”类比推出“若a,b,c,d∈Q,则a+b=c+d⇒a=c,b=d”;
③“若a,b∈R,则a-b>0⇒a>b”类比推出“若a,b∈C,则a-b>0⇒a>b”.其中类比结论正确的个数是________________________________________________________.
3.(2009·江苏)在平面上,若两个正三角形的边长比为1∶2,则它们的面积比为1∶4,类似地,在空间中,若两个正四面体的棱长比为1∶2,则它们的体积比为________.
4.(2010·陕西)观察下列等式:13+23=32,13+23+33=62,13+23+33+43=102,…,根据上述规律,第五个等式为________________________________.
5.(2010·苏州统一测试)一切奇数都不能被2整除,2100+1是奇数,所以2100+1不能被2整除,其演绎推理的“三段论”的形式为______________________________________
________________________________________________________________________.
探究点一 归纳推理
例1 在数列{an}中,a1=1,an+1=,n∈N*,猜想这个数列的通项公式,这个猜想正确吗?请说明理由.
变式迁移1 观察:①sin210°+cos240°+sin 10°cos 40°=;②sin26°+cos236°+sin 6°cos 36°=.
由上面两题的结构规律,你能否提出一个猜想?并证明你的猜想.
探究点二 类比推理
例2 在平面内,可以用面积法证明下面的结论:
从三角形内部任意一点,向各边引垂线,其长度分别为pa,pb,pc,且相应各边上的高分别为ha,hb,hc,则有++=1.
请你运用类比的方法将此结论推广到四面体中并证明你的结论.
变式迁移2 在Rt△ABC中,若∠C=90°,AC=b,BC=a,则△ABC的外接圆半径r=,将此结论类比到空间有_____________________________________________
________________________________________________________________________
________________________________________________________________________.
探究点三 演绎推理
例3 在锐角三角形ABC中,AD⊥BC,BE⊥AC,D、E是垂足.求证:AB的中点M到D、E的距离相等.
变式迁移3 指出对结论“已知和是无理数,证明+是无理数”的下述证明是否为“三段论”,证明有错误吗?
证明:∵无理数与无理数的和是无理数,而与都是无理数,∴+也是无理数.
1.合情推理是指“合乎情理”的推理,数学研究中,得到一个新结论之前,合情推理常常能帮助我们猜测和发现结论;证明一个数学结论之前,合情推理常常能为我们提供证明的思路和方向.合情推理的过程概括为:
―→―→―→.一般来说,由合情推理所获得的结论,仅仅是一种猜想,其可靠性还需进一步证明.
2.归纳推理与类比推理都属合情推理:(1)归纳推理:由某类事物的部分对象具有某些特征,推出该类事物的全部对象都具有这些特征的推理,或由个别事实概括出一般结论的推理,称为归纳推理.它是一种由部分到整体,由个别到一般的推理.(2)类比推理:由两类对象具有某些类似特征和其中一类对象的某些已知特征,推出另一类对象也具有这些特征的推理称为类比推理,它是一种由特殊到特殊的推理.
3.从一般性的原理出发,推出某个特殊情况下的结论,把这种推理称为演绎推理,也就是由一般到特殊的推理,三段论是演绎推理的一般模式,包括大前提,小前提,结论.
(满分:90分)
一、填空题(每小题6分,共48分)
1.(2010·福建厦门华侨中学模拟)定义A*B,B*C,C*D,D*A的运算分别对应下图中的(1)、(2)、(3)、(4),那么下图中的(A)、(B)所对应的运算结果分别为________________.
2.(2010·厦门模拟)设f(x)=,又记f1(x)=f(x),fk+1(x)=f(fk(x)),k=1,2,…,则f2 011(x)=____________.
3.由代数式的乘法法则类比推导向量的数量积的运算法则:
①“mn=nm”类比得到“a·b=b·a”;
②“(m+n)t=mt+nt”类比得到“(a+b)·c=a·c+b·c”;
③“(m·n)t=m(n·t)”类比得到“(a·b)·c=a·(b·c)”;
④“t≠0,mt=xt⇒m=x”类比得到“p≠0,a·p=x·p⇒a=x”;
⑤“|m·n|=|m|·|n|”类比得到“|a·b|=|a|·|b|”;
⑥“=”类比得到“=”.
以上的式子中,类比得到的结论正确的个数是________.
4.(2011·南通月考)有一个奇数列1,3,5,7,9,…,现在进行如下分组:第一组含有一个数1,第二组含有两个数3,5;第三组含有三个数:7,9,11;第四组含有四个数:13,15,17,19;…试观察每组内各数之和与组的编号数n的关系为______________________.
5.已知整数的数对如下:(1,1),(1,2),(2,1),(1,3),(2,2),(3,1),(1,4),(2,3),(3,2),(4,1),(1,5),(2,4),…则第60个数对是________.
6.已知正三角形内切圆的半径是高的,把这个结论推广到空间正四面体,类似的结论是________________________________________________________________________
____________.
7.(2010·广东深圳高级中学一模)定义一种运算“*”:对于自然数n满足以下运算性质:
(1)1] .
8.(2011·陕西,13)观察下列等式
1=1
2+3+4=9
3+4+5+6+7=25
4+5+6+7+8+9+10=49
…
照此规律,第n个等式为___________________________________________________.
二、解答题(共42分)
9.(14分)已知数列{an}的前n项和为Sn,a1=-,且Sn++2=0(n≥2).计算S1,S2,S3,S4,并猜想Sn的表达式.
10.(14分)已知函数f(x)=- (a>0且a≠1),
(1)证明:函数y=f(x)的图象关于点对称;
(2)求f(-2)+f(-1)+f(0)+f(1)+f(2)+f(3)的值.
11.(14分)如图1,若射线OM,ON上分别存在点M1,M2与点N1,N2,则=·;如图2,若不在同一平面内的射线OP,OQ和OR上分别存在点P1,P2,点Q1,Q2和点R1,R2,则类似的结论是什么?这个结论正确吗?说明理由.
学案35 合情推理与演绎推理
答案
自主梳理
归纳推理 一般性 部分 个别 类比推理 ①一般性原理 ②特殊对象 ③特殊对象 一般 特殊
自我检测
1.-g(x)
解析 由所给函数及其导数知,偶函数的导函数为奇函数.因此当f(x)是偶函数时,其导函数应为奇函数,故g(-x)=-g(x).
2.2
解析 ①②正确,③错误.因为两个复数如果不全是实数,不能比较大小.
3.1∶8
解析 ∵两个正三角形是相似的三角形,∴它们的面积之比是相似比的平方.同理,两个正四面体是两个相似几何体,体积之比为相似比的立方,所以它们的体积比为1∶8.
4.13+23+33+43+53+63=212
解析 由前三个式子可以得出如下规律:每个式子等号的左边是从1开始的连续正整数的立方和,且个数依次多1,等号的右边是一个正整数的平方,后一个正整数依次比前一个大3,4,…,因此,第五个等式为13+23+33+43+53+63=212.
5.一切奇数都不能被2整除 大前提
2100+1是奇数 小前提
所以2100+1不能被2整除 结论
课堂活动区
例1 解题导引 归纳分为完全归纳和不完全归纳,由归纳推理所得的结论虽然未必是可靠的,但它由特殊到一般、由具体到抽象的认识功能,对科学的发现是十分有用的,观察、实验,对有限的资料作归纳整理,提出带规律性的说法是科学研究的最基本的方法之一.
解 在{an}中,a1=1,a2==,
a3===,a4==,…,
所以猜想{an}的通项公式为an=.
这个猜想是正确的,证明如下:
因为a1=1,an+1=,
所以==+,
即-=,所以数列是以=1为首项,
为公差的等差数列,
所以=1+(n-1)×=n+,
所以通项公式an=.
变式迁移1 解 猜想sin2α+cos2(α+30°)+sin αcos(α+30°)=.
证明如下:
左边=sin2α+cos(α+30°)[cos(α+30°)+sin α]
=sin2α+
=sin2α+cos2α-sin2α==右边.
例2 解题导引 类比推理是根据两个对象有一部分属性类似,推出这两个对象的其他属性亦类似的一种推理方法,例如我们拿分式同分数来类比,平面几何与立体几何中的某些对象类比等等.我们必须清楚类比并不是论证,它可以帮助我们发现真理.类比推理应从具体问题出发,通过观察、分析、联想进行对比、归纳、提出猜想.
解
类比:从四面体内部任意一点向各面引垂线,其长度分别为pa,pb,pc,pd,且相应各面上的高分别为ha,hb,hc,hd,则有+++=1.
证明如下:
==,
同理有=,=,=,
VP—BCD+VP—CDA+VP—BDA+VP—ABC=VA—BCD,
∴+++
==1.
变式迁移2 在三棱锥A—BCD中,若AB、AC、AD两两互相垂直,且AB=a,AC=b,AD=c,则此三棱锥的外接球半径R=
例3 解题导引 在演绎推理中,只有前提(大前提、小前提)和推理形式都是正确的,结论才是正确的,否则所得的结论可能就是错误的.推理时,要清楚大前提、小前提及二者之间的逻辑关系.
证明 (1)因为有一个内角是直角的三角形是直角三角形,——大前提
在△ABD中,AD⊥BC,即∠ADB=90°,——小前提
所以△ADB是直角三角形.——结论
(2)因为直角三角形斜边上的中线等于斜边的一半,——大前提
而M是Rt△ADB斜边AB的中点,DM是斜边上的中线,——小前提
所以DM=AB.——结论
同理EM=AB,所以DM=EM.
变式迁移3 解 证明是“三段论”模式,证明有错误.证明中大前提使用的论据是“无理数与无理数的和是无理数”,这个论据是假的,因为两个无理数的和不一定是无理数,因此原理的真实性仍无法断定.
课后练习区
1.B*D,A*C
解析 由(1)(2)(3)(4)图得A表示|,B表示□,C表示—,D表示○,故图(A)(B)表示B*D和A*C.
2.
解析 计算f2(x)=f==-,
f3(x)=f==,
f4(x)==x,f5(x)=f1(x)=,
归纳得f4k+i(x)=fi(x),k∈N*,i=1,2,3,4.
∴f2 011(x)=f3(x)=.
3.2
解析 只有①、②对,其余错误.
4.每组内各数之和等于n3
解析 1=13,3+5=23,7+9+11=33.
猜想每组内各数之和等于n3.
5.(5,7)
解析 观察可知横坐标和纵坐标之和为2的数对有1个,和为3的数对有2个,和为4的数对有3个,和为5的数对有4个,依次类推和为n+1的数对有n个,多个数对的排序是按照横坐标依次增大的顺序来排的,由=60⇒n(n+1)=120,n∈Z,n=10时,=55(个)数对,还差5个数对,且这5个数对的横、纵坐标之和为12,它们依次是(1,11),(2,10),(3,9),(4,8),(5,7),
∴第60个数对是(5,7).
6.空间正四面体的内切球的半径是高的
解析 利用体积分割可证明.
7.n
解析 由(n+1)*1=n*1+1,得n*1=(n-1)*1+1=(n-2)*1+2=…=1]
8.n+(n+1)+…+(3n-2)=(2n-1)2
解析 ∵1=12,2+3+4=9=32,3+4+5+6+7=25=52,∴第n个等式为n+(n+1)+…+(3n-2)=(2n-1)2.
9.解 当n=1时,S1=a1=-.(2分)
当n=2时,=-2-S1=-,
∴S2=-.(5分)
当n=3时,=-2-S2=-,
∴S3=-.(8分)
当n=4时,=-2-S3=-,
∴S4=-.(11分)
猜想:Sn=- (n∈N*).(14分)
10.(1)证明 函数f(x)的定义域为R,
任取一点(x,y),它关于点对称的点的坐标为(1-x,-1-y).(2分)
由已知得y=-,
则-1-y=-1+=-,(4分)
f(1-x)=-=-
=-=-,
∴-1-y=f(1-x).
即函数y=f(x)的图象关于点对称.(7分)
(2)解 由(1)有-1-f(x)=f(1-x),
即f(x)+f(1-x)=-1.(10分)
∴f(-2)+f(3)=-1,f(-1)+f(2)=-1,
f(0)+f(1)=-1,
则f(-2)+f(-1)+f(0)+f(1)+f(2)+f(3)=-3.
(14分)
11.解 类似的结论为:=··.
(4分)
这个结论是正确的,证明如下:
如图,过R2作R2M2⊥平面P2OQ2于M2,连结OM2.
过R1在平面OR2M2作R1M1∥R2M2交OM2于M1,
则R1M1⊥平面P2OQ2.
由VO—P1Q1R1=S△P1OQ1·R1M1=·OP1·OQ1·sin∠P1OQ1·R1M1
=OP1·OQ1·R1M1·sin∠P1OQ1,(8分)
同理,VO—P2Q2R2=OP2·OQ2·R2M2·sin∠P2OQ2.
所以=.(10分)
由平面几何知识可得=.(12分)
所以=.
所以结论正确.(14分)
展开阅读全文