资源描述
追及和相遇问题
1.解答追及和相遇问题的三种方法
情景分析法
抓住“两物体能否同时到达空间某位置”这一关键,认真审题,挖掘题目中的隐含条件,建立一幅物体运动关系的情景图
函数判断法
设相遇时间为t,根据条件列方程,得到关于位移x与时间t的函数关系,由此判断两物体追及或相遇情况
图像分析法
将两个物体运动的速度—时间关系或位移—时间关系画在同一图像中,然后利用图像分析求解相关问题
2.情景分析法的基本思路
例1.汽车A以vA=4 m/s的速度向右做匀速直线运动,发现前方相距x0=7 m处、以vB=10 m/s的速度同向运动的汽车B正开始匀减速刹车直到静止后保持不动,其刹车的加速度大小a=2 m/s2。从此刻开始计时。求:
(1)A追上B前,A、B间的最远距离是多少?
(2)经过多长时间A恰好追上B?
[解题指导] 汽车A和B的运动过程如图所示。
[解析] (1)当A、B两汽车速度相等时,两车间的距离最远,即v=vB-at=vA,解得t=3 s
此时汽车A的位移xA=vAt=12 m
汽车B的位移xB=vBt-at2=21 m
故最远距离Δxmax=xB+x0-xA=16 m。
(2)汽车B从开始减速直到静止经历的时间t1==5 s
运动的位移xB′==25 m
汽车A在t1时间内运动的位移xA′=vAt1=20 m
此时相距Δx=xB′+x0-xA′=12 m
汽车A需再运动的时间t2==3 s
故A追上B所用时间t总=t1+t2=8 s。
[答案] (1)16 m (2)8 s
(1)若某同学应用关系式vBt-at2+x0=vAt解得经过t=7 s(另解舍去)时A恰好追上B。这个结果合理吗?为什么?
(2)若汽车A以vA=4 m/s的速度向左匀速运动,其后方相距x0=7 m处,以vB=10 m/s的速度同方向运动的汽车B正向左开始匀减速刹车直到静止后保持不动,其刹车的加速度大小为a=2 m/s2,则经过多长时间两车恰好相遇?
提示:(1)这个结果不合理,因为汽车B运动的时间最长为t==5 s<7 s,说明汽车A追上B时汽车B已停止运动。
(2)可由位移关系式:vBt-at2=x0+vAt,解得t1=(3-)s,t2=(3+)s。
例题及延伸思考旨在培养考生“贴合实际、全面分析”运动学问题的思维习惯:
(1)如匀速运动的物体追匀减速运动的物体时,注意判断追上时被追的物体是否已停止。
(2)匀减速运动的物体追匀速运动的物体时,有追不上、恰好追上、相撞或相遇两次等多种可能。
1.[与xt图像相结合的追及相遇问题]
甲、乙两人同时同地骑自行车出发做直线运动,前1 h内的xt图像如图所示,下列表述正确的是( )
A.0.2~0.5 h内,甲的速度比乙的小
B.0.2~0.5 h内,甲的加速度比乙的大
C.0.6~0.8 h内,甲的位移比乙的小
D.0.8 h时,甲追上乙
解析:选D xt图像的斜率表示速度,0.2~0.5 h内,甲的斜率大,则甲的速度比乙的大,故A错误。由题图知,0.2~0.5 h内,甲、乙都做匀速直线运动,加速度均为零,故B错误。物体的位移等于x的变化量,则知0.6~0.8 h内,甲的位移比乙的大,故C错误。0.8 h时,甲、乙位移相等,甲追上乙,故D正确。
2.[与vt图像相结合的追及相遇问题]
(多选)(2018·全国卷Ⅱ)甲、乙两汽车在同一条平直公路上同向运动,其速度—时间图像分别如图中甲、乙两条曲线所示。已知两车在t2时刻并排行驶。下列说法正确的是( )
A.两车在t1时刻也并排行驶
B.在t1时刻甲车在后,乙车在前
C.甲车的加速度大小先增大后减小
D.乙车的加速度大小先减小后增大
解析:选BD t1~t2时间内,v甲>v乙,t2时刻相遇,则t1时刻甲车在乙车的后面,故A错误、B正确。由图像的斜率知,甲、乙两车的加速度大小均先减小后增大,故C错误、D正确。
3.[多种方法解决追及相遇问题]
在水平轨道上有两列火车A和B相距s,A车在后面做初速度为v0、加速度大小为2a的匀减速直线运动,而B车同时做初速度为零、加速度为a的匀加速直线运动,两车运动方向相同。要使两车不相撞,求A车的初速度v0满足什么条件。
解析:要使两车不相撞,A车追上B车时其速度只能与B车相等。设A、B两车从相距s到A车追上B车时,A车的位移为sA、末速度为vA、所用时间为t,B车的位移为sB、末速度为vB,两者的运动过程如图所示,现用三种方法解答如下:
法一:情景分析法
利用位移公式、速度公式求解
对A车有sA=v0t+×(-2a)×t2
vA=v0+(-2a)×t
对B车有sB=at2,vB=at
对两车有s=sA-sB
追上时,两车不相撞的临界条件是vA=vB
联立以上各式解得v0=
故要使两车不相撞,A车的初速度v0应满足的条件是v0<。
法二:函数判断法
利用判别式求解,由法一可知
sA=s+sB,即v0t+×(-2a)×t2=s+at2
整理得3at2-2v0t+2s=0
这是一个关于时间t的一元二次方程,当根的判别式Δ=(-2v0)2-4×3a×2s<0时,t无实数解,即两车不相撞,所以要使两车不相撞,A车的初速度v0应满足的条件是v0<。
法三:图像分析法
利用速度—时间图像求解,先作A、B两车的速度—时间图像,其图像如图所示,设经过t′时间两车刚好不相撞,则
对A车有vA=v′=v0-2at′
对B车有vB=v′=at′
以上两式联立解得t′=
经t′时间两车发生的位移大小之差,即原来两车间的距离s
它可用图中的阴影面积表示,由图像可知
s=v0·t′=v0·=
所以要使两车不相撞,A车的初速度v0应满足的条件是v0<。
答案:v0<
追及和相遇问题
1.解答追及和相遇问题的三种方法
情景分析法
抓住“两物体能否同时到达空间某位置”这一关键,认真审题,挖掘题目中的隐含条件,建立一幅物体运动关系的情景图
函数判断法
设相遇时间为t,根据条件列方程,得到关于位移x与时间t的函数关系,由此判断两物体追及或相遇情况
图像分析法
将两个物体运动的速度—时间关系或位移—时间关系画在同一图像中,然后利用图像分析求解相关问题
2.情景分析法的基本思路
例1.汽车A以vA=4 m/s的速度向右做匀速直线运动,发现前方相距x0=7 m处、以vB=10 m/s的速度同向运动的汽车B正开始匀减速刹车直到静止后保持不动,其刹车的加速度大小a=2 m/s2。从此刻开始计时。求:
(1)A追上B前,A、B间的最远距离是多少?
(2)经过多长时间A恰好追上B?
(1)若某同学应用关系式vBt-at2+x0=vAt解得经过t=7 s(另解舍去)时A恰好追上B。这个结果合理吗?为什么?
(2)若汽车A以vA=4 m/s的速度向左匀速运动,其后方相距x0=7 m处,以vB=10 m/s的速度同方向运动的汽车B正向左开始匀减速刹车直到静止后保持不动,其刹车的加速度大小为a=2 m/s2,则经过多长时间两车恰好相遇?
例题及延伸思考旨在培养考生“贴合实际、全面分析”运动学问题的思维习惯:
(1)如匀速运动的物体追匀减速运动的物体时,注意判断追上时被追的物体是否已停止。
(2)匀减速运动的物体追匀速运动的物体时,有追不上、恰好追上、相撞或相遇两次等多种可能。
1.[与xt图像相结合的追及相遇问题]
甲、乙两人同时同地骑自行车出发做直线运动,前1 h内的xt图像如图所示,下列表述正确的是( )
A.0.2~0.5 h内,甲的速度比乙的小
B.0.2~0.5 h内,甲的加速度比乙的大
C.0.6~0.8 h内,甲的位移比乙的小
D.0.8 h时,甲追上乙
2.[与vt图像相结合的追及相遇问题]
(多选)(2018·全国卷Ⅱ)甲、乙两汽车在同一条平直公路上同向运动,其速度—时间图像分别如图中甲、乙两条曲线所示。已知两车在t2时刻并排行驶。下列说法正确的是( )
A.两车在t1时刻也并排行驶
B.在t1时刻甲车在后,乙车在前
C.甲车的加速度大小先增大后减小
D.乙车的加速度大小先减小后增大
3.[多种方法解决追及相遇问题]
在水平轨道上有两列火车A和B相距s,A车在后面做初速度为v0、加速度大小为2a的匀减速直线运动,而B车同时做初速度为零、加速度为a的匀加速直线运动,两车运动方向相同。要使两车不相撞,求A车的初速度v0满足什么条件。
法一:情景分析法
法二:函数判断法
法三:图像分析法
展开阅读全文