资源描述
《怎样走最近》优秀教学设计
学习目标:1、运用勾股定理及直角三角形的判别条件解决简单的实际问题。
2、在解决实际问题的过程中,进一步培养从“形”到“数”和从“数”到“形”的转化,培养学生的转化、推理能力。
学习重点:如何将立体图形展开成平面图形,利用平面几何相关知识如对称、线段公理、点到直线的距离等求最短路径问题。
学习难点:如何将立体图形展开成平面图形,利用平面几何相关知识如对称、线段公理、点到直线的距离等求最短路径问题。
一、学前准备
1、勾股定理及其逆定理的内容是什么?
2、已知一个三角形的三边长分别是12cm,16cm,20cm,则这个三角形的面积为 。
A
B
C
3、如图,从电线杆离地面6 m处向地面拉一条长10 m的缆绳,这条缆绳在地面的固定点距离电线杆底部有多远?
二、探究活动
1、自主探究,合作交流
如图:有一个圆柱,它的高为12厘米,底面半径为3厘米,在圆柱下底面的A点有一只蚂蚁,它想吃到上底面相对的B点处的食物,沿圆柱侧面爬行的最短路程是多少?(π的值取3)
(1)同学们可自己做一个圆柱,尝试从A点到B点沿圆柱的侧面画出几条路线,你觉得哪条路线最短呢?(小组讨论)
(2)如图,将圆柱侧面剪开展开成一个长方形,从A点到B 点的最短路线是什么?你画对了吗?
(3)蚂蚁从A点出发,想吃到B点上的食物,它沿圆柱侧面爬行的最短路程是多少?
提示:我们知道,圆柱的侧面展开图是一长方形.那现在咱们就用剪刀沿母线AA′将圆柱的侧面展开(如下图).
我们不难发现,应该有下面几种走法:
(1)A→A′→B; (2)A→B′→B;
(3)A→D→B; (4)A—→B.
哪条路线是最短呢?你画对了吗?
三、我的课堂我做主
1、甲、乙两位探险者到沙漠进行探险。某日早晨8:00甲先出发,他以6千米/时的速度向正东行走。1时后乙出发,他以5千米/时的速度向正北行走。上午10:00,甲、乙二人相距多远?
2、一个无盖的长方体盒子的长、宽、高分别为8cm、8cm、12cm,一只蚂蚁想从盒底的A点爬到盒顶的B点,你能帮 蚂蚁设计一条最短的线路吗?蚂蚁要爬行的最短行程是多少?请在你的学具上画出几条线路,你认为将长方体侧面展开有几种方式?
四、巩固练习
1、在我国古代数学著作《九章算术》中记载了一道有趣的问题,这个问题的意思是:有一个水池,水面是一个边长为10尺的正方形.在水池正中央有一根新生的芦苇,它高出水面1尺.如果把这根芦苇垂直拉向岸边,它的顶端恰好到达岸边的水面.请问这个水池的深度和这根芦苇的长度各为多少?
五、学习心得
通过本节课的学习你有哪些收获?
六、应用拓展
1、如图,有一个高1.5米,半径是1米的圆柱形油桶,在靠近边的地方有一小孔,从孔中插入一铁棒,已知铁棒在油桶外的部分是0.5米,问这根铁棒应有多长?
展开阅读全文