收藏 分销(赏)

角平分线(二).doc

上传人:仙人****88 文档编号:9072480 上传时间:2025-03-12 格式:DOC 页数:4 大小:64KB
下载 相关 举报
角平分线(二).doc_第1页
第1页 / 共4页
角平分线(二).doc_第2页
第2页 / 共4页
点击查看更多>>
资源描述
锦州市第十八中学 课时教学设计 授课班级 8.6 授课时间 3.14 课 题(章、单元、节)第一单元第十节角平分线 教 学 目 标 知识目标 (1)证明与角的平分线的性质定理和判定定理相关的结论. (2)角平分线的性质定理和判定定理的灵活运用. 能力目标 (1)进一步发展学生的推理证明意识和能力. (2)培养学生将文字语言转化为符号语言、图形语言的能力. (3)提高综合运用数学知识和方法解决问题的能力. 情感态度 (1)能积极参与数学学习活动,对数学有好奇心和求知欲. (2)在数学活动中获得成功的体验,锻炼克服困难的意志,建立自信心. 教 学 重 点 ①三角形三个内角的平分线的性质. ②综合运用角平分线的判定和性质定理,解决几何中的问题 教 学 难 点 角平分线的性质定理和判定定理的综合应用 教 具 学 具 三角板 圆规 教 学 过 程 设计意图、时间 一、问题导学、自主探究 问题l 习题1.8的第1题作三角形的三个内角的角平分线,你发现了什么?能证明自己发现的结论一定正确吗? 于是,首先证明“三角形的三个内角的角平分线交于一点” . 二、合作探究、展示交流 已知:如图,设△ABC的角平分线.BM、CN相交于点P, 证明:P点在∠BAC的角平分线上. 证明:过P点作PD⊥AB,PF⊥AC,PE⊥BC,其中D、E、F是垂足. ∵BM是△ABC的角平分线,点P在BM上, ∴PD=PE(角平分线上的点到这个角的两边的距离相等). 同理:PE=PF. ∴PD=PF. ∴点P在∠BAC的平分线上(在一个角的内部,且到角两边距离相等的点,在这个角的平分线上). ∴△ABC的三条角平分线相交于点P. 在证明过程中,我们除证明了三角形的三条角平分线相交于一点外,还有什么“附带”的成果呢? (PD=PE=PF,即这个交点到三角形三边的距离相等.) 于是我们得出了有关三角形的三条角平分线的结论,即定理三角形的三条角平分线相交于一点,并且这一点到三条边的距离相等. 三、 经典例题 ,变式练习 [例1]如图,在△ABC中.AC=BC,∠C=90°,AD是△ABC的角平分线,DE⊥AB,垂足为E. (1)已知CD=4 cm,求AC的长; (2)求证:AB=AC+CD. 分析:本例需要运用前面所学的多个定理,而且将计算和证明融合在一起,目的是使学生进一步理解、掌握这些知识和方法,并能综合运用它们解决问题.第(1)问中,求AC的长,需求出BC的长,而BC=CD+DB,CD=4 cIn,而BD在等腰直角三角形DBE中,根据角平分线的性质,DE=CD=4cm,再根据勾股定理便可求出DB的长.第(2)问中,求证AB=AC+CD.这是我们第一次遇到这种形式的证明,利用转化的思想AB=AE+BE,所以需证AC=AE,CD=BE. (1)解:∵AD是△ABC的角平分线, ∠C=90°,DE⊥AB. ∴DE=CD=4cm(角平分线上的点到这个角两边的距离相等). ∵∠AC=∠BC ∴∠B=∠BAC(等边对等角). ∵∠C=90°, ∴∠B=×90°=45°. ∴∠BDE=90°—45°=45°. ∴BE=DE(等角对等边). 在等腰直角三角形BDE中 BD=2DE2.=4 2 cm(勾股定理), ∴AC=BC=CD+BD=(4+42)cm. (2)证明:由(1)的求解过程可知, Rt△ACD≌Rt△AED(HL定理) ∴AC=AE. ∵BE=DE=CD, ∴AB=AE+BE=AC+CD. 变式训练,看课件 如图:直线l1、l2、l3表示三条相互交叉的公路,现要建一个货物中转站,要求它到三条公路的距离相等,则可选择的地址有几处?你如何发现的? 要求学生思考、交流。实况如下: [生]有一处.在三条公路的交点A、B、C组成的△ABC三条角平分线的交点处.因为三角形三条角平分线交于一点,且这一点到三边的距离相等.而现在要建的货物中转站要求它到三条公路的距离相等.这一点刚好符合. [生]我找到四处.(同学们很吃惊)除了刚才同学找到的三角形ABC内部的一点外,我认为在三角形外部还有三点.作∠ACB、∠ABC外角的平分线交于点P1(如下图所示),我们利用角平分线的性质定理和判定定理,可知点P1在∠CAB的角平分线上,且到l1、l2、l3的距离相等.同理还有∠BAC、∠BCA的外角的角平分线的交点P3;因此满足条件共4个,分别是P、P1、P2、P3 四、 探讨收获 ,课时小结 本节课我们利用角平分线的性质和判定定理证明了三角形三条角平分线交于一点,且这一点到三角形各边的距离相等.并综合运用我们前面学过的性质定理等解决了几何中的计算和证明问题. 当然学生可能会提到折纸证明、软件演示等方式证明, 5分钟 教师要引导学生进行逻辑上的证明。 5分钟 渗透学生模块化解题方法 10分钟 变式训练,培养学生能力 15分钟 知识应用注意 多种情况。 8分钟 小结2分钟 作业布置 习题1.10第1、2题 板书设计 教学反思 4 / 4
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传
相似文档                                   自信AI助手自信AI助手

当前位置:首页 > 教育专区 > 初中数学

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服