收藏 分销(赏)

Maple中基本函数指令.docx

上传人:s4****5z 文档编号:9010369 上传时间:2025-03-11 格式:DOCX 页数:5 大小:17.50KB
下载 相关 举报
Maple中基本函数指令.docx_第1页
第1页 / 共5页
Maple中基本函数指令.docx_第2页
第2页 / 共5页
点击查看更多>>
资源描述
Maple用法 Maple 函数用法 一、 基本命令 重新开始:restart 命名:名字:= 引用前值:% 字符连接:|| 保护命名:protect 解除保护命名:unprotrct 变量类型:whattype 检验命名:assigned 别名:alias 宏:macro 帮助:?函数名 map 把命令作用到每一个元素,seq 生成序列,add 生成和,mul 生成积 二、基本运算 1. 近似计算:evalf(表达式,小数位数) ,用 Digits 命令提前设定小数位数 2. 取整运算:round 四舍五入 ,trunc 向 0 取整, ceil 向-∝取整, floor 向∝取整 3. 范围限定:assume(限定变量范围)frac 小数部分 4. 绝对值(模) :abs(表达式) ,复数求其模 5. 同余:mod(数 1,数 2) ,或者:数 1 mod 数 2 6. 平方根:sqrt(表达式) ,平方根最接近整数:isqrt(表达式) 7. 阶乘:factorial(数) ,双阶乘:doublefactorial(数) 8. 分解质因数:ifactor(数) ,分解质因数成组 ifactors(数) 9. 商与余数:商 iquo(除数,被除数) ,余数 irem(除数,被除数) 10.最大公约数:igcd(数 1,数 2) ,最小公倍数:ilcm(数 1,数 2) 11.形如 as+bt=(a,b)分解:igcdex(a,b,’s’,’t’) 12.数组最大最小值:max(数 1,数 2,…) ,min(数 1,数 2,…) 13.实部、虚部与幅角:实部 Re(复数) ,虚部 Im(复数) ,幅角 argument 14.共轭复数:conjugate(复数) 15.形如 a+bi 整理:evalc(表达式) 16.并集:集合 1 union 集合 2,交集:intersect,差集:minus 17.元素个数:nops(集合) ,用 op 可把集合转化成表达式 三、多项式 1. 降幂排列:sort(多项式) ,字典排序 plex(第三个参数) 2. 次数:degree(多项式) ,系数:coeff(多项式,项) ,首项系数:lcoeff 尾项系数:tcoeff,所有系数:coeffs(多项式,变量, ‘power‘) 3. 合并同类项:collect(多项式,合并参数) 4. 商式:quo(除式,被除式,变量) ,余式:rem,整除检验:divide 5. 最大公因式:gcd(多项式 1,多项式 2) ,最小公倍式 lcm 6. 因式分解:factor(多项式) ,可用第二个参数限定数域缺省代表有理数域 7. 分母有理化:rationalize(多项式) ,有理分式化简:normal 或者 factor 8. 化简表达式:simplify,带假设化简:simplify(表达式,assume=范围) 附加关系化简:simplify(表达式,{条件})代换:subs(条件,表达式) 9. 展开与合并:展开 expand(表达式) ,合并 combine(表达式) 10.等价转换:convert(函数,转化成的函数) 四、解方程 1. 方程(组) :solve({方程(组)},{未知量(缺省对所有变量求解}) 2. 数值解:fsolve(方程,变量范围(可缺省) ,数域(可缺省) ) 3. 三角方程:添加_EnvAllSolutions:=ture 以求得所有解 4. 多项式方程解的区间:realroot(多项式) 5. 不等式(组) :solve({不等式(组)},{变量}) 6. 整数解:isolve(方程,变量) 7. 模 m 的解:msolve(方程,模 m) 8. 递推关系的通项:rsolve({递推关系,初值},{通项}) 9. 函数方程:solve(函数方程,函数) 10.系数匹配:match(式子 1=式子 2,变量,’s’) 11.Grobner 基原理:先调用 with(grobner) ,此命令将方程的解等价化简 Gsolve({式子 1,式子 2,…},[变量 1,变量 2,…] 12.微分方程:dsolve({方程,初值(可缺)},函数,’explicit’(可缺)) 13.微分方程组:dsolve({方程 1、2,…,初值},{函数 1,函数 2,…}) 14.拉普拉斯变换法:dsolve({微分方程},函数,method=laplace) 15.微分方程级数解:dsolve({微分方程},函数,type=series) 16.微分方程数值解:dsolve({微分方程},函数,type=numeric) 17.微分方程图形解:DEplot 图形表示微分方程,dfielplot 箭头表示向量场, phaseportrait 向量场及积分曲线,DEplot3d 三维空间图形表示微分方程 18.偏微分方程:pdsolve(偏微分方程,求解函数) 19.分离变量解偏微分方程:pdsolve(方程,函数,HINT=’*’,’build’) 20.偏微分方程图形解:PDEplot(方程,函数,ini 边界 s,s 范围) 五、数据处理 1. 统计软件包:先调用程序包 with(stats) ,有 7 个子包:anova 方差分析, describe 描述数据分析,fit 拟合回归分析,transform 数据形式变换 , random 分布产生随机数,statevalf 分布的数值计算,statplots 统计绘图 2. 基本命令:平均值 mean,方差 variance,标准差 standarddeviation,中 位数 median,众数 mode,数据求和 sumdata,协方差 covariance, 相对标 准差(标准差/平均值)coefficientofvariation,计数(非缺失)count,计缺 失数 countmissing,范围 range,几何平均值 geometricmean,线性相关数 linearcorrelation 3. 统计图形:直方图 histogram,散点图 scatter2d、quantile2(先从小到大 排序再作图),箱式图 boxplot 4. 统计分布函数值:正态分布随机分布命令 normald[期望,方差] 先调用程序包 with(statevalf)用法 statevalf(分布函数,求解函数) 连续分布:cdf 累积密度函数,icdf 逆累积密度函数,pdf 概率密度函数 离散分布:dcdf 离散累积概率函数,idcdf 逆离散累积函数,pf 概率函数 5. 插值 插值:整体插值命令 f:=interp(数据 1,数据 2,变量) 分段插值命令 f:=spline(数据 1,数据 2,变量,次数) 6. 回归 回归:leastsquare[[x,y],y=多项式,{多项式系数}]([数据 1,数据 2]) f:=fit(数据 1,数据 2,拟合函数,变量) 六、微积分 1. 函数定义:函数名:=->表达式,复合函数:f(g(x):=f@g ) 2. 表达式转换成函数:unapply(表达式,函数变量) 3. 极值:极大值 maximize(函数,变量,范围,location=true(极值点)) 极小值 minimize(函数,变量,范围,location=true(极值点)) 条件极值:extreme(函数,约束条件,{变量},’s’(极值点)) 4. 极限:limit(函数,x=趋值,方向(省缺,left,right,complex)) 5. 连续性:判断 iscont(函数,x=范围)第三个参数 closed 表示闭区间 求解 discont(函数,变量) 6. 微分:显函数 diff(函数,变量)对 x 多次求导用 x$n 微分算子 D 隐函数 implicitdiff(函数,依赖关系 y(x),对象 y,变量 x) 7. 切线作图:showtangent(函数,x=点,view=[x 范围,y 范围]) 8. 不定积分:int(函数,积分变量),定积分:int(函数,x=下限..上限) 9. 复函数积分:先求奇点 solve(denom(函数)),再用留数规则求解 2*Pi*I(residue(f,z=奇点 1)+ residue(f,z=奇点 2)+…) 10.定积分矩形:下矩形:作图 leftbox(f,x=范围,块数)面积 leftsum (f,x=范围,块数)。上矩形作图 rightbox,面积 rightsum 11.求和:sum(表达式,k=范围),求积:product(表达式,k=范围) 12.级数展开:普通级数 series(函数,x=点,阶数) 泰勒级数 taylor 多变量泰勒展开 mtaylor(函数,[x=点,y=点]) 13.形式幂级数:convert(函数,FormalPowerSeries,x=点) 14.积分变换:先调用程序包with(inttrans) 拉普拉斯:laplace(函数,原变量,新变量)逆变换invlaplace 傅里叶:fourier(函数,原变量,新变量)逆变换invfourier 七、作图 二维图形:plot(函数,x=范围)scaling=constrained按照原始比例作图 参数方程作图:plot([x参数方程,y参数方程,参数范围]) 极坐标作图:先调用with(plots)再运用polarplot(函数,极角范围) 极坐标参数方程作图:polarplot([r参数,极角参数,参数范围]) 隐函数作图:implicitplot(表达式,x范围,y范围) 分段函数作图:f:=->piecewise(范围1,函数1,范围2,函数2,…) plot(函数,x范围,discont=true(去掉不连续点处垂线) 离散点绘图:plot([[x1,y1],[x2,y2],…],style=point(只画点不画线) 多重图像:plot([函数1,函数2,…],x=范围) 三维图形:plot3d(f,x范围,y范围)阴影style=patch坐标框axes=boxed 球面坐标:sphereplot([函数],theta范围,phi范围) 柱面坐标:cylinderplot([函数],theta范围,z范围) 二维动画:animate(函数,x范围,参数范围,frames=帧数(可缺省)) 三维动画:animate3d(函数,x范围,y范围,参数范围) 对数尺度图形:先调用with(plots)再运行logplot(函数,x范围) 三维图形二维表示:灰度densityplot,等高线contourplot 1 复函数图像:complexplot(f,x范围)style=point画出复方程根的分布 .
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传
相似文档                                   自信AI助手自信AI助手

当前位置:首页 > 教育专区 > 其他

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服