收藏 分销(赏)

一元二次方程教案.doc

上传人:胜**** 文档编号:897933 上传时间:2024-04-03 格式:DOC 页数:8 大小:115KB
下载 相关 举报
一元二次方程教案.doc_第1页
第1页 / 共8页
一元二次方程教案.doc_第2页
第2页 / 共8页
一元二次方程教案.doc_第3页
第3页 / 共8页
一元二次方程教案.doc_第4页
第4页 / 共8页
一元二次方程教案.doc_第5页
第5页 / 共8页
点击查看更多>>
资源描述

1、表格式教学设计模板221一元二次方程案例名称一元二次方程科目数学教学对象九年级学生提供者姜锐课时一课时一、教材内容分析一元二次方程是在学生已经学习了一元一次方程、二元一次方程组概念、解法及应用的基础上展开的,重点通过具体事例构建一元二次方程模型,通过分析所构建模型的关键特征,类比一元一次方程的有关概念建构一元二次方程的概念及一元二次方程的根。能将一元二次方程转化为一般形式,能结合具体问题情境运用无限逼近的思想估算一元二次方程的根。本节共2课时,本课是第一课时,重点讨论一元二次方程的概念和能将一元二次方程转化为一般形式,正确识别二次项系数、一次项系数及常数项。教科书充分遵循学生的认知规律,依据课

2、程标准要求,首先通过引例设立悬念引出章课题,然后通过两个实际问题,在探获得出三个一元二次方程的基础上,通过观察探究所列方程的共同特征建构一元二次方程的概念、一般形式。厘清一元二次方程的各项系数对探求一元二次方程的解法、判断一元二次方程根的情况以及二次函数的学习都有重要影响,本节所蕴含的数学建模思想以及将一元二次方程转化为一般式中所蕴含的化归思想是贯穿于数学学习始末的重要数学思想。因此,本课在知识传承、方法渗透和对学生能力的培养上都具有基础性作用。二、教学目标(知识与技能,过程与方法,情感态度、价值观)知识技能:探索一元二次方程及其相关概念,能够辨别各项系数;能够从实际问题中抽象出方程知识过程与

3、方法:在探索问题的过程中使学生感受方程是刻画现实世界的一个模型,体会方程与实际生活的联系情感态度:通过用一元二次方程解决身边的问题,体会数学知识应用的价值,提高学生学习数学的兴趣,了解数学对促进社会进步和发展人类理性精神的作用三、学习者特征分析教学对象是九年级学生,在学习本节之前,已经掌握一元一次方程、二元一次方程组的概念,知道运用化归思想熟练地解一元一次方程(不等式),能够通过消元化归解二元一次方程组,能善于借助方程模型数学化地解决实际问题。从思维特点上看,九年级学生的理性思维基本形成,观察思考、理性概括等思维特征趋于稳定,能够从特殊事例中抽象概括出概念的关键特征,能够从众多事例中抽取概念的

4、关键特征,并加以理性判断。本节课让学生在回顾一元一次方程基础上,通过观察类比、合作学习等方式认识一元二次方程。但学生概括运用知识的能力欠缺,因此,教学中应引导学生大胆类比,适当运用恒等变形将一元二次方程转化为一般形式,正确识别二次项系数、一次项系数及常数项,为后面的解一元二次方程奠定基础。四、教学策略选择与设计本节课采用了“问题情境建立模型探索新知得出结论”的基本模式,从解决实际问题的需要入手,结合八年级整式的有关概念和一元一次方程概念的回顾,类比出一元二次方程的概念体验类比的数学思想。通过丰富的实例,让学生合作探讨,老师点评分析,建立数学模型,依据数学模型恰如其分的给出一元二次方程的概念及一

5、般形式。发展学生“自主探究,合作交流”的意识,增强学生学好数学的愿望和信心。在这个活动过程中,学生是主动参与问题的分析者及解决者,着力培养学生分析问题、解决问题、概括运用的能力。五、教学环境及资源准备多媒体课件。六、教学过程教学过程教师活动学生活动设计意图及资源准备活动1问题:对于下列问题,你能设出未知数,列出相应的方程吗?问题1 如图,有一块矩形铁皮,长100 cm,宽50 cm在它的四个角分别切去一个正方形,然后将四周突出的部分折起,就能制作一个无盖方盒如果要制作的无盖方盒的底面积是3 600 cm2,那么铁皮各角应切去多大的正方形?(课件:制作盒子)问题2 要组织一次排球邀请赛,参赛的每

6、两个队之间都要比赛一场根据场地和时间等条件,赛程计划安排7天,每天安排4场比赛,比赛组织者应该邀请多少个队参赛?1、课件出示问题1、2,启导学生口答;2、结合学生对问题2活动1中教师应注意:(1)学生对列方程解应用问题的步骤是否清楚;(2)学生能否说出每一步骤的关键和应注意问题学生通过分析设出合适的未知数,列出方程问题1考虑从不同角度列方程,角度一:等量关系是底面的长宽等于底面积,设切去的正方形的边长是x cm,则有方程(1002x)(502x)3 600;角度二:等量关系是底面积等于大长方形的面积减去四个小正方形的面积,再减去四个长方形的面积,同样设正方形的长是x cm,则有方程通过整理得到

7、方程分析问题2,全部比赛共28场,若设邀请x个队参赛,每个队要与其他(x1)个队各赛一场,由于甲队对乙队的比赛和乙队对甲队的比赛是同一场比赛,所以全部比赛共场,于是得到方程,经过整理得到方程活动1为学生创设了一个回忆、思考的情境,又是本课一种很自然的引入,为本课的探究活动做好铺垫活动21你能通过观察下列方程得到它们的共同特点吗?(1);(2);(3)282将方程化成一元二次方程的一般形式,并指出各项系3猜测方程的解是什么?4(1)下列哪些数是方程的根?从中你能体会根的作用吗?4,3,2,1,0,1,2,3,4(2)若x2是方程的一个根,你能求出a的值吗?从中你能体会方程的根的作用吗?在学生交流

8、看法的基础上,引导学生归纳:方程的等号两边都是整式,只含有一个未知数,且未知数的最高次数是2的方程叫作一元二次方程;一般地,任何一个关于x的一元二次方程,经过整理,都能化成如下形式这种形式叫作一元二次方程的一般形式其中ax2是二次项,a是二次项的系数;bx是一次项,b是一次项系数;c是常数项此时让学生指出上述方程中前两个方程的各项系数在学生指出各项系数的环节中,及时让学生分析可能出现的问题(比如系数的符号问题)引导学生归纳:方程的根可以起到检验的作用检验一个数是否是方程的根分组合作、小组讨论,经过讨论后交流小组的结论,可以发现上述方程都不是所学过的方程,特点是两边都是整式,且整式的最高次数是2

9、次学生可以采取多种方法得到方程的解,比如可以用尝试的方法取x1、2、3、4、5等,发现x8时等号成立,于是x8是方程的一个解,如此等等探索一元二次方程的定义及其相关概念进一步巩固一元二次方程的基本概念活动3巩固练习、归纳总结、布置作业巩固练习:1你能根据所学过的知识解出下列方程的解吗?(1);(2)2有人解这样一个方程解:x+5=1或x1 = 7,所以x1=4,x2 =8,你的看法如何?归纳总结:本节课你学到了什么知识?从中得到了什么启发?学生进行充分讨论,在教师适当引导的基础上分析问题经过分析可以发现,由得到x+5=1或x1=7,应该是x+5=1且x1=7,同时成立才行,此时得到x=4且x=

10、8,显然矛盾,因此上述解法是错误的学生在思考的基础上进行交流,发现若进行移项变为,即已知一个数的平方是36,求这个数,显然是求36的平方根,容易得到x6;同样的方法处理(2)解答1(1)原方程可以化为,于是x6;(2)原方程可以化为,于是x巩固练习开 始教学流程图创设情景,感受新知课件1合作交流,探索新知课件2巩固练习、归纳总结课件3小组讨论动手实践合作交流结 束活动一出示问题1,2活动二出示问题3,4活动三出示巩固练习交流评议七、教学评价设计1、 课堂练习完成情况。2、 作业完成情况。3、 能否灵活应对其他的应用题。4、 做题时反应的快慢。注:以上主要以1、2、3点为主,以第四点为辅进行评价,评价等级有四:优秀、良好、合格和不合格。八、帮助和总结1、本节课内容对于学生整个中学阶段的数学学习有着重大的意义,能否学好关系到日后学习的成败,因此必须要让学生吃透内容并且要真正能消化。2、在授课过程中,教师由于过分考虑时间的长短而对学生接受方面有所忽视,尤其是在列了几道方程之后,完全可以让学生试着去推出“一元二次方程”的一般形式,而不是急着自己把答案说出来,这是一个失败的地方。3、在培养学生独立思考方面还有待加强。4、课堂练习还可以再适当增加一点,以巩固课堂所学。8

展开阅读全文
部分上传会员的收益排行 01、路***(¥15400+),02、曲****(¥15300+),
03、wei****016(¥13200+),04、大***流(¥12600+),
05、Fis****915(¥4200+),06、h****i(¥4100+),
07、Q**(¥3400+),08、自******点(¥2400+),
09、h*****x(¥1400+),10、c****e(¥1100+),
11、be*****ha(¥800+),12、13********8(¥800+)。
相似文档                                   自信AI助手自信AI助手
搜索标签

当前位置:首页 > 教育专区 > 初中教案

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服