资源描述
发动机相关术语
(1)上止点--活塞离曲轴旋转中心最远处,通常即活塞的最高位置。
(2)下止点--活塞离曲轴旋转中心最近处,通常即活塞的最低位置。
(3)活塞行程--上、下两止点间的距离。
(4)冲程--活塞由一个止点到另一个止点运动一次的过程。
(5)曲轴半径--曲轴与连杆大端连接的中心到曲轴旋转中心的距离。
(6)气缸工作容积--活塞从上止点到下止点所让出的空间的容积。
(7)发动机工作容积--发动机所有气缸工作容积之和,也称发动机的排量。
(8)燃烧室容积--活塞在上止点时,活塞顶上面的空间叫燃烧室,它的容积称燃烧室容积。
(9)气缸总容积--活塞在下止点时,活塞顶上面整个空间的容积,它等于气缸工作容积与燃烧室容积之和。
(10)压缩比--气缸总容积与燃烧室容积的比值。
发动机将热能转变为机械能的过程,是经过进气、压缩、作功和排气四个连续的过程来实现的,每进行一次这样的过程就叫一个工作循环。凡是曲轴旋转两圈,活塞往复四个行程完成一个工作循环的,称为四冲程发动机。曲轴旋转一圈,即活塞往复两个行程完成一个工作循环的,称为两冲程发动机。
1. 四冲程汽油机的工作原理:
(1) 进气行程。曲轴带动活塞从上止点向下止点运动,此时,进气门开启,排气门关闭。活塞移动过程中,气缸内容积逐渐增大,形成真空度,于是可燃混合气通过进气门被吸入气缸,直至活塞到达下止点,进气门关闭时结束。
由于进气系统存在进气阻力,进气终了时气缸内气体的压力低于大气压力,约为0.075MPa~0.09MPa。由于气缸壁、活塞等高温件及上一循环留下的高温残余废气的加热,气体温度升高到370K~440K。
(2) 压缩行程。进气行程结束时,活塞在曲轴的带动下,从下止点向上止点运动,气缸内容积逐渐减小。此时进、排气门均关闭,可燃混合气被压缩,至活塞到达上止点时压缩结束。压缩过程中,气体压力和温度同时升高,并使混合气进一步均匀混合,压缩终了时,气缸内的压力约为0.6MPa~1.2MPa,温度约为600K~800K。
(3) 作功行程。在压缩行程末,火花塞产生电火花点燃混合气,并迅速燃烧,使气体的温度、压力迅速升高,从而推动活塞从上止点向下止点运动,通过连杆使曲轴旋转作功,至活塞到达下止点时作功结束。
作功开始时气缸内气体压力、温度急剧上升,瞬间压力可达3MPa~5MPa,瞬时温度可达2200K~2800K。
(4) 排气行程。在作功行程接近终了时,排气门打开,进气门关闭,曲轴通过连杆推动活塞从下止点向上止点运动。废气在自身剩余压力和在活塞推动下,被排出气缸,至活塞到达上止点时,排气门关闭,排气结束。因排气系统存在排气阻力,排气冲程终了时,气缸内压力略高于大气压力,约为0.105MPa~0.115MPa,温度约为900K~1200K。
2.四冲程柴油机的工作原理:
由于使用燃料的性质不同,四冲程柴油机的可燃混合气的形成和着火方式与汽油机有很大区别。下面主要叙述柴油机与汽油机工作循环的不同之处。
(1) 进气行程。进气行程中进入气缸的不是可燃混合气,而是纯空气。
(2) 压缩行程。压缩行程中将进入气缸的纯空气压缩,由于柴油的压缩比大,约为15~22,压缩终了的温度和压力都比汽油机高,压力可达3MPa~5MPa,温度可达800K~1000K。
(3)作功行程。在压缩行程终了时,喷油泵将高压柴油经喷油器呈雾状喷入气缸内的高温高压空气中,被迅速汽化并与空气形成混合气。由于气缸内的温度高于柴油的自燃温度(约500K左右),柴油混合气便立即自行着火燃烧,且此后一段时间内边喷油边燃烧,气缸内压力和温度急剧升高,推动活塞下行作功。
作功行程中,瞬时压力可达5MPa~10MPa,瞬时温度可达1800K~2200K。
(4)排气行程。此行程与汽油机基本相同。
由上述四行程汽油机和柴油机的工作循环可知,两种发动机工作循环的基本内容相似。四个行程中只有作功行程产生动力,其他三个行程是为作功行程做准备工作的辅助行程,都要消耗一部分能量。发动机起动时的第一个循环,必须有外力将曲轴转动,以完成进气和压缩行程。当作功行程开始后,作功能量便通过曲轴储存在飞轮内,以维持以后的循环得以继续进行。
3.二冲程汽油机的工作原理:
二冲程发动机工作循环也包括进气、压缩、作功和排气四个过程,但它是在活塞往复两个行程内完成的。
(1)第一行程。活塞从下止点向上止点移动,当活塞上行至关闭换气孔和排气孔时,已进入气缸的可燃混合气被压缩,活塞继续上移至上止点时,压缩结束。与此同时,活塞上行时,其下方曲轴箱内形成一定真空度。当活塞上行至进气孔开启时,新鲜的可燃混合气被吸入曲轴箱,至此,第一行程结束。
(2)第二行程。活塞接近上止点时,火花塞产生电火花点燃被压缩的可燃混合气。燃烧形成的高温、高压气体推动活塞下行作功。当活塞下行到关闭进气孔后,曲轴箱内的混合气被预压缩;活塞继续下行至排气孔开启时,燃烧后废气靠自身压力经排气孔排出;紧接着,换气孔开启,曲轴箱内经预压的混合气进入气缸,并排除气缸内残余废气。这一过程称换气过程,它将一直延续到下一行程活塞再上行关闭换气孔和排气孔为止。活塞下行到下止点时,第二行程结束。
由上两个行程可知:第一行程时,活塞上方进行换气、压缩,活塞下方进行进气;第二行程时,活塞上方进行作功、换气,活塞下方预压混合气。换气过程跨越二个行程。
发动机是将某一种型式的能量转换为机械能的机器,其作用是将液体或气体燃烧的化学能通过燃烧后转化为热能,再把热能通过膨胀转化为机械能并对外输出动力。发动机是一部由许多结构和系统组成的复杂机器,其结构型式多种多样,但由于基本工作原理相同,所以其基本结构也就大同小异,发动机的总体结构图如下所示。
汽油发动机
柴油发动机
汽油机通常由曲柄连杆、配气两大机构和燃料供给、润滑、冷却、点火、起动五大系统组成。柴油机通常由两大机构和四大系统组成(无点火系)。
1.曲柄连杆机构
曲柄连杆机构是由气缸体、气缸盖、活塞、连杆、曲轴和飞轮等组成。这是发动机产生动力,并将活塞的直线往复运动转变为曲轴旋转运动而对外输出动力。
2.配气机构
配气机构是由进气门、排气门、气门弹簧、挺杆、凸轮轴和正时齿轮等组成。其作用是将新鲜气体及时充入气缸,并将燃烧产生的废气及时排出气缸。
3.燃料供给系
由于使用的燃料不同,可分为汽油机燃料供给系和柴油机燃料供给系。
汽油燃料供给系又分化油器式和燃油直接喷射式两种,通常所用的化油器式燃料供给系由燃油箱、汽油泵、汽油滤清器、化油器、空气滤清器、进排气歧管和排气消声器等组成,其作用是向气缸内供给已配好的可燃混合气,并控制进入气缸内可燃混合气数量,以调节发动机输出的功率和转速,最后,将燃烧后废气排出气缸。
柴油机燃料供给系由燃油箱、输油泵、喷油泵、柴油滤清器、进排气管和排气消声器等组成,其作用是向气缸内供给纯空气并在规定时刻向缸内喷入定量柴油,以调节发动机输出功率和转速,最后,将燃烧后废气排出气缸。
4.冷却系
机动车一般采用水冷却式。水冷式由水泵、散热器、风扇、节温器和水套(在机体内)等组成,其作用是利用冷却水的循环将高温零件的热量通过散热器散发到大气中,从而维持发动机电动正常工作温度。
5.润滑系
润滑系由机油泵、滤清器、油道、油底壳等组成。其作用是将润滑油分送至各个相对运动零件的摩擦面,以减小摩擦力,减缓机件磨损,并清洗、冷却摩擦表面。
6.点火系
汽油机点火系由电源(蓄电池和发电机)、点火线圈、分电器和火花塞等组成,其作用是按规定时刻及时点燃气缸内被压缩的可燃混合气。
7.起动系
起动系由起动机和起动继电器等组成,用以使静止的发动机起动并转入自行运转状态。
活塞的主要作用是承受气缸中气体压力并通过活塞销和连杆传给曲轴。此外,活塞还与气缸盖、气缸壁共同组成燃烧室,
由于活塞顶部直接与高温燃气接触,承受很高的热负荷;活塞还承受周期性变化的的气体压力和惯性力的作用, 因此要求活塞应有足够的强度和刚度,质量尽可能小,导热性能要好,要有良好的耐热性、耐磨性,温度变化时,尺寸及形状的变化要小。
汽车发动机目前广泛采用的活塞材料是铝合金,有的柴油机上也采用合金铸铁或耐热钢制造活塞。
活塞的基本结构可分为顶部、头部和裙部三个部分。
1.活塞顶部。活塞顶部是燃烧室的组成部分,用来承受气体压力。根据不同的目的和要求,活塞顶部制成各种不同的形状:常见的有平顶活塞、、凸顶活塞、凹顶活塞及成型顶活塞。
(2)活塞头部。活塞头部是活塞环槽以上的部分。其主要作用是承受气体压力,并传给连杆;与活塞环一起实现对气缸的密封;将活塞顶所吸收的热量通过活塞环传给气缸壁。
活塞头部切有若干道用以安装活塞环的环槽。汽油机活塞一般有3~4道环槽,上面2~3道用以安装气环,下面一道用以安装油环。在油环槽底面上钻有若干径向小孔,以使被油环从气缸壁上刮下来的多余机油经过这些小孔流回油底壳。经常出现拉缸就是这里出了问题 ,原因可能是空气滤清器出现问题或者空气中尘土太多,从而尘土进入汽缸,造成拉缸,也可能是机油压力太低等原因。
(3)活塞裙部。活塞环槽以下的部分称为活塞裙部。其作用是引导活塞在气缸内作往复运动,并承受侧压力。
发动机是将燃料燃烧的热能转化为机械能的一种机器。
现代汽车用发动机多为往复活塞式内燃机,简称活塞式内燃机。它将燃料在气缸内燃烧,使其热能直接转化成机械能。
>> 第一章 发动机的工作原理和总体构造
第一节 基本概念
一、内燃机产品名称和型号编制规则
我国于1982年制定了新的国家标准GB725一82。该标准的主要内容如下:
1.内燃机产品名称均按所采用的燃料命名,如汽油机、柴油机等。
2.内燃机型号以阿拉伯数字和汉语拼音字母组成。
3.内燃机型号由下列四部分组成:
首部 中部 后部 尾部
字母表示 数字或字母表示 字母表示 企业自定
□□ □□□□ □□ □□
| | | | | | | | |
| 换代符号 | | | 缸径符号(mm) | | 区分符号
系列符号 | | 冲程符号 | 用途特征符号
| | (E为二冲程、 | (Q车用、T拖拉机用、
| | 四冲程不标) | M摩托车用、G工程机械)
| | |
| 气缸排列型式符号 结构特征符号
| (无符号为直列式) (水冷无符号、F风冷、Z增压)
缸数符号
例1:汽油机EQ6100Q-1——第二汽车制造厂、六缸、四冲程、缸径100mm、水冷式、车用、第一种变型
例2:柴油机12Ⅴ135Z——十二缸、Ⅴ型、四冲程、缸径135mm、增压。
二、基本术语
如图所示,活塞置于气缸中,活塞可在气缸内作往复直线运动,活塞通过连杆和曲轴相连,曲轴可绕其轴线旋转。
1.上止点:活塞离曲轴回转中心最远处,通常指活塞上行到最高位置。
2.下止点:活塞离曲轴回转中心最近处,通常指活塞下行到最低位置。
3.活塞行程(S):上、下两止点间的距离(mm)。
4.曲柄半径(R):与连杆下端(即连杆大头)相连的曲柄销中心到曲轴回转中心的距离(mm)。
曲轴每转一转,活塞移动两个行程。
5.气缸工作容积(Ⅴh):活塞从上止点到下止点所让出的空间容积(L)。
Ⅴh =πD2/(4×106)S (L)
式中:D——气缸直径(mm)。
6.发动机排量(ⅤL):发动机所有气缸工作容积之和(L)。设发动机的气缸数为i,则
Ⅴ1 =Ⅴh i (L)
7.燃烧室容积(ⅤC):活塞在上止点时,活塞上方的空间叫燃烧室,它的容积叫燃烧室容积(L)。
8.气缸总容积(Ⅴa):活塞在下止点时,活塞上方的容积称为气缸总容积(L)。它等于气缸工作容积与燃烧室容积之和,即
Ⅴa =Ⅴh +ⅤC
9.压缩比(ε):气缸总容积与燃烧室容积的比值,即
ε =Ⅴa /ⅤC =(Ⅴh +ⅤC)/ ⅤC =1+Ⅴh /ⅤC
它表示活塞由下止点运动到上止点时,气缸内气体被压缩的程度。压缩比越大,压缩终了时气缸内的气体压力和温度就越高。一般车用汽油机的压缩比为6~10,柴油机的压缩比为15~22。
10.发动机的工作循环:在气缸内进行的每一次将燃料燃烧的热能转化为机械能的一系列连续过程(进气、压缩、作功和排气)称发动机的工作循环。
11.二冲程发动机:活塞往复两个行程完成一个工作循环的称为二冲程发动机。
12.四冲程发动机:活塞往复四个行程完成一个工作循环的称为四冲程发动机。
[NextPage]
第一章 发动机的工作原理和总体构造
第二节 发动机的简单工作原理
一、四冲程汽油机的工作原理
四冲程汽油机是由进气、压缩、作功和排气完成一个工作循环的,如图所示为单缸四冲程汽油机工作原理示意图。
1.进气行程
(1)活塞由曲轴带动从上止点向下止点运动。
(2)进气门开启,排气门关闭。
(3)由于活塞下移,活塞上腔容积增大,形成一定真空度,在真空吸力的作用下,空气与汽油形成的混合气,经进气门被吸入气缸,至活塞运动到下止点时,进气门关闭,停止进气,进气行程结束。
2.压缩行程
(1)活塞在曲轴的带动下,从下止点向上止点运动。
(2)进、排气门均关闭。
(3)随着活塞上移、活塞上腔容积不断减小,混合气被压缩,至活塞到达上止点时,压缩行程结束。
在压缩过程中,气体压力和温度同时升高。压缩终了时,气缸内的压力约为600~1500kPa,温度约为600K~800K,远高于汽油的点燃温度 (约263K) 。
3.作功行程
(1)压缩行程末,火花塞产生电火花,点燃气缸内的可燃混合气,并迅速着火燃烧,气体产生高温、高压,在气体压力的作用下,活塞由上止点向下止点运动,再通过连杆驱动曲轴旋转向外输出作功,至活塞运动到下止点时,作功行程结束。
(2)作功行程,进、排气门均关闭。
在作功过程中,开始阶段气缸内气体压力、温度急剧上升,瞬时压力可达3MPa~5MPa,瞬时温度可达2200K~2800K。随着活塞的下移,压力、温度下降,作功行程终了时,压力约为300kPa~500kPa,温度约为1500K~1700K。
4.排气行程
(1)在作功行程终了时,排气门被打开,活塞在曲轴的带动下由下止点向上止点运动。
(2)废气在自身的剩余压力和活塞的驱赶作用下,自排气门排出气缸,至活塞运动到上止点时,排气门关闭,排气行程结束。
排气终了时,由于燃烧室容积的存在,气缸内还存有少量废气,气体压力也因排气门和排气道等有阻力而高于大气压。此时,压力约为105kPa~125kPa,温度约为900K~1200K。
排气行程结束后,进气门再次开启,又开始了下一个工作循环,如此周而复始,发动机就自行运转。
图1-9 四冲程汽油机工作原理
二、四冲程柴油机的工作原理
如图所示,四冲程柴油机和四冲程汽油机工作原理一样,每个工作循环也是由进气、压缩、作功和排气四个行程所组成。但柴油和汽油性质不同,柴油机在可燃混合气的形成、着火方式等与汽油机有较大区别。下面主要介绍与汽油机工作原理不同之处。
1.进气行程
进气行程,不同于汽油机的是进入气缸的不是混合气,而是纯空气。
2.压缩行程
(1)压缩行程压缩的是纯空气。
(2)由于柴油机压缩比大,压缩终了的温度和压力都比汽油机高,压力可达3MPa~5MPa,温度可达800K~1000K。
注:点燃温度是指燃料在空气中移近火焰时,其表面上的燃料蒸气能够被点着的最低环境温度。汽油的点燃温度很低,约为263K,柴油的点燃温度高,约为313K~359K。
自燃温度是指燃料不与火焰接近,能够自行燃烧的最低环境温度;柴油的自燃温度低,约为473K~573K,汽油的自燃温度高,约为653K。
3.作功行程
(1)压缩行程末,喷油泵将高压柴油经喷油器呈雾状喷入气缸内的高温空气中,迅速汽化并与空气形成可燃混合气。因为此时气缸内的温度远高于柴油的自燃温度(约500K左右),柴油自行着火燃烧,且以后的一段时间内边喷边燃烧,气缸内的温度、压力急剧升高,推动活塞下行作功。
(2)作功行程中,瞬时压力可达5MPa~10MPa,瞬时温度可达1800K~2200K;作功终了,压力约为200kPa~400kPa,温度约为1200K~1500K。
4.排气行程
排气行程与汽油机排气行程基本相同。
由上述四冲程汽油机和柴油机的工作原理可知:
1)两种发动机工作循环的基本内容相似,其共同特点是:
(1)每个工作循环曲轴转两转(720°)每一行程曲轴转半转(180°),进气行程是进气门开启,排气行程是排气门开启,其余两个行程进、排气门均关闭。
(2)四个行程中,只有作功行程产生动力,其它三个行程是为作功行程做准备工作的辅助行程,虽然作功行程是主要行程,但其它三个行程也不可缺少。
(3)发动机运转的第一个循环,必须有外力使曲轴旋转完成进气、压缩行程,着火后,完成作功行程,依靠曲轴和飞轮贮存的能量便可自行完成以后的行程,以后的工作循环发动机无需外力就可自行完成。
2)两种发动机工作循环的主要不同之处是:
(1)汽油机的汽油和空气在气缸外混合,进气行程进入气缸的是可燃混合气。而柴油机进气行程进入气缸的是纯空气,柴油是在作功行程开始阶段喷入气缸,在气缸内与空气混合,即混合形成方式不同。
(2)汽油机用电火花点燃混合气,而柴油机是用高压将柴油喷入气缸内,靠高温气体加热自行着火燃烧,即着火方式不同。所以汽油机有点火系,而柴油机则无点火系。
三、二冲程汽油机的工作原理
二冲程汽油机完成一个工作循环也需向缸内引入可燃混合气,然后将其压缩,着火作功后再将燃烧后的废气排到大气中去,但它完成上述工作是在活塞往复运动两个行程完成的。
1. 结构特点:如图所示,在气缸上开三个口,排气口位于作功时活塞全行程的三分之二处,它稍高于换气口,进气口在气缸的下部。其工作原理如下:
2. 工作原理
第一行程 活塞在曲轴的带动下由下止点向上止点运动
(1)压缩 当活塞上行到将换气口、排气口关闭时,已进入气缸的混合气被压缩,直到活塞运动到上止点、压缩行程便结束。
(2)换气 随着活塞上行,曲轴箱容积增大,形成一定的真空度,当活塞上行到进气口露出时,化油器供应的新鲜混合气在真空吸力的作用下被吸入曲轴箱内。
第二行程 活塞由上止点向下止点运动
(1)作功 当活塞上行到接近上止点时,火花塞产生电火花,点燃缸内的可燃混合气,混合气着火燃烧产生高温、高压,在气压的作用下,活塞由上止点向下止点运动,带动曲轴旋转向外输出作功。
(2)曲轴箱内混合气预压 当活塞下移到将进气口堵死时,随着活塞继续下移,曲轴箱内的新鲜混合气被预压。
(3)排废气与换气 当活塞下行到排气口露出时,燃烧后的废气在自身压力下经排气口排出气缸,紧接着换气口开启,曲轴箱内被预压的混合气经换气口进入气缸。这一过程称为:“换气过程”,它一直延续到下一个行程活塞上行到将换气口、排气口关闭为止。
由上述可知,第一行程活塞上方进行换气、压缩,活塞下方进气;第二行程活塞上方进行作功、换气,活塞下方混合气被预压,换气过程纵跨两个行程。
排气口位置稍高于换气口,这样可使作功行程将要结束时,排气口首先露出,气缸内的废气在残压的作用下迅速排出,既有利于排气干净,也可使气缸内压力迅速降低,便于当换气口露出时,新鲜混合气进入气缸。
活塞顶部通常做成特殊形状,以便将从换气口进入气缸的新鲜混合气引到气缸的上部。这样既可防止新鲜混合气混入废气内,随废气一起排出气缸,又可驱赶废气,使排气更加彻底。事实上,尽管如此,要完全避免新鲜混合气不随废气排出是不可能的,故二冲程汽油机的换气“品质”差。
四、二冲程柴油机工作原理
二冲程柴油机工作原理同二冲程汽油机工作原理有很多相似之处,所不同的是:
1.进入气缸的不是混合气,而是纯空气。
2.有换气泵将空气压入气缸。新鲜空气由换气泵提高压力(约120kPa~140kPa),后经气缸外部的空气室和气缸上的进气口进入气缸内。
3.当活塞接近上止点时,喷油器向缸内喷入雾状柴油,柴油迅速与空气混合形成可燃混合气并自行着火燃烧。
4.废气由专设的排气门排出。
图1-5 二冲程柴油机工作原理示意图
二冲程发动机的特点:
比较上述四冲程发动机与二冲程发动机的工作原理可以看出,二冲程发动机具有以下特点:
1.四冲程发动机的进、排气是两个分开的专门过程,而二冲程发动机单纯的排气(或进气)时间极短,主要是一个几乎完全重叠的,以新鲜气体清扫废气的换气过程。这样的换气过程不可避免地会发生新鲜气体和废气混合,造成废气难以排净和新鲜气体随废气排出的后果。
2.完成一个工作循环,二冲程发动机只需转一转,而四冲程发动机需要转两转。因此,当发动机工作容积、压缩比和转速相等时,从理论上讲,二冲程发动机的功率应为四冲程发动机功率的两倍,但实际上,只有1.5~1.6倍,这是由于二冲程发动机难以将废气排净,以及为了安排换气过程而较多地损失了高压气体的作功能力,另外还有可燃混合气随废气排出等所致。
3.当转速相同时,二冲程发动机的作功次数较四冲程发动机多一倍。因此,二冲程发动机运转较平稳,这对单缸发动机来说更为明显。
4.由于没有气门或只有排气门,也就省去了配气机构或使配气机构较为简单,简化了发动机的结构。
由于二冲程汽油机有混合气损失,故经济性差,在大中型汽车上的应用受到了限制。但由于它结构简单、重量轻、制造成本低等优点,轻便摩托车和微型汽车的小排量发动机广泛采用。二冲程柴油机由于换气时进入气缸的是纯空气,没有燃料损失,为某些汽车所采用。
五、多缸发动机的工作
从上述各单缸发动机工作原理可知,只有作功行程产生动力,其它三个行程都要消耗动力。为了维持运动,单缸发动机必须有一个贮备能量较大的飞轮。即使如此,发动机运转仍然是不平稳的,作功行程快,其它行程慢。
汽车上实际应用的是多缸发动机,它是由若干个相同的单缸排列在一个机体上共用一根曲轴输出动力所组成。现代汽车上用的较多是四缸、六缸、八缸发动机。
多缸发动机是在曲轴转角720°内(四冲程发动机)或曲轴转角360°内(二冲程发动机),各缸都要象单缸发动机一样完成一个工作循环。为了使发动机运转平稳,各缸作功间隔角大都均等。如四冲程六缸发动机各缸作功间隔角为
Ψ=720°/6=120°
即曲轴每转1200就有一个缸作功,各缸作功行程略有搭接,这样发动机运转较单缸发动机平稳得多。另外,由于各缸的作功行程为其它缸的准备行程提供动力,所以贮存能量的飞轮也较单缸发动机小得多。四缸发动机从理论上讲作功冲程就已连续,而六、八缸发动机都有作功重叠,且缸数越多、重叠得就越大,发动机运转得就越平稳。
图1—8 V型发动机总体构造
发动机的总体构造
汽油机通常由二大机构、五大系统组成;柴油机由二大机构、四大系统(较汽油机少点火系)组成。
图1—7 汽车发动机外形图
下面以汽油发动机为例,介绍发动机的总体构造(见下图)。
汽油发动机的两大机构是:
1.曲柄连杆机构:主要由缸盖、缸体、油底壳、活塞、连杆、曲轴及飞轮等组成。其作用是实现功能转换。
2.配气机构:主要由进气门、排气门、挺杆、推杆、摇臂、凸轮轴、凸轮轴正时齿轮等组成。其作用是适时开关进、排气门,以便可燃混合气能及时进入气缸、废气能及时从缸内排出。
图1—7 EQ6100-1型汽油机总体构造
图1—7 EQ6100-1型汽油机总体构造
汽油发动机的五大系统是:
1.燃料供给系:主要由汽油箱、汽油滤清器、汽油泵、化油器、空气滤清器、进气管、排气管、排气消声器等组成。
其作用是将汽油和空气混合成一定数量和一定浓度的混合气供入气缸,并将着火燃烧后的废气排出发动机。
2.点火系:主要由分电器、点火线圈、火花塞等组成。其作用是使火花塞适时产生电火花,点燃缸内的可燃混合气。
3.冷却系:主要由水泵、散热器、水套、风扇、节温器等组成。其作用是把受热机件感受的多余热量散发到大气中去,以保证发动机在正常温度下工作。
4.润滑系:主要由机油泵、集滤器、润滑油道、机油粗滤器、机油细滤器等组成。其主要功用是将机油送到各摩擦副间,以减少它们之间的摩擦与磨损。
5.起动系:主要由起动机等件组成。其功用是起动发动机。
图1—8 一汽奥迪100型轿车发动机总体构造
第一节 概 述
发动机工作时,传力零件相对运动表面之间不能直接接触。因为,任何零件的工作表面,即使经过极为精密的加工,也难免存在一定程度的表面粗糙度。在它们接触且相对运动时,必然产生摩擦和磨损。而摩擦产生的阻力,既要消耗动力,阻碍零件的运动,又使零件发热,甚至导致工作表面烧损。因此,必须进行润滑。即在两零件的工作表面之间加入一层润滑油使其形成油膜,将零件完全隔开,处于完全的液体摩擦状态。这样,功率消耗和磨损就会大为减少。
一、润滑系的作用
图6-1 运动零件表面放大图
1-零件;2-放大镜;3-金属末
1. 润滑:将润滑油不断地供给各零件的摩擦表面,形成润滑油膜,减小零件的摩擦、磨损和功率消耗。
2.清洁
发动机工作时,不可避免地要产生金属磨屑,空气所带入的尘埃及燃烧所产生的固体杂质等。这些颗粒若进入零件的工作表面,就会形成磨料,大大加剧零件的磨损。而润滑系通过润滑油的流动将这些磨料从零件表面冲洗下来,带回到曲轴箱。在这里,大的颗粒沉到油底壳底部,小的颗粒被机油滤清器滤出,从而起到清洁的作用。
3.冷却
由于运动零件的摩擦和混合气的燃烧,使某些零件产生较高的温度。而润滑油流经零件表面时可吸收其热量并将部分热量带回到油底壳散入大气中,起到冷却作用。
4.密封
发动机气缸壁与活塞、活塞环与环槽之间间隙中的油膜,减少了气体的泄漏,保证气缸的应有压力,起到了密封作用。
5.防蚀
由于润滑油粘附在零件表面上,避免了零件与水、空气、燃气等的直接接触,起到了防止或减轻零件锈蚀和化学腐蚀的作用。
二、润滑机理
润滑油膜形成的基本条件是两零件之间存在油楔及相对运动,并且有足够的润滑油供给。润滑油膜形成原理如图所示。
1.静止时,在自重的作用下,轴3处于最低位置与轴承以P点相接触(图a),这时润滑油从轴和轴承中被挤出来。
2.当轴转动时,粘附在轴表面的油便随轴一起转动。由于轴与轴承的间隙成楔形,使润滑油产生一定的压力。在此压力作用下,轴被推向一侧(图b)。
3.随着轴的转速的提高,单位时间被带动的油也越多,油压力就越大。当轴的转速达到一定高度时,轴便被油压抬起(图c)。这样,油膜将轴与轴承完全隔开,使之变为液体摩擦,从而减轻了运动阻力,减少了运动件的磨损。
a) b) c)
图6-2 旋转零件润滑油膜
1-轴承;2-润滑油;3-轴
图6-3 滑动零件润滑油膜
三、发动机的润滑方式
发动机工作时,由于各运动零件的工作条件不同,因而所要求的润滑强度和方式也不同。零件表面的润滑,按其供油方式可分为压力润滑和飞溅润滑。现代汽车发动机都采用复合式润滑方式。
1.压力润滑 对负荷大,相对运动速度高(如,主轴承、连杆轴承、凸轮轴轴承等)的零件,以一定压力将机油输送到摩擦面间隙中进行润滑的方式。
2.飞溅润滑是对外露、负荷较轻、相对运动速度较小(如:活塞销、气缸壁、凸轮表面和挺杆等)的工作表面,依靠运动零件飞溅起来的油滴或油雾进行润滑的方式。
展开阅读全文