资源描述
第十三章 非正弦周期电流电路和信号的频谱
重点:
1. 非正弦周期电流电路的电流、电压的有效值、平均值;
2. 非正弦周期电流电路的平均功率
3. 非正弦周期电流电路的计算方法
难点:
1. 叠加定理在非正弦周期电流电路中的应用
2. 非正弦周期电流电路功率的计算
与其它章节的联系:
叠加定理
RLC串联谐振
RLC并联谐振
数学知识:傅里叶分析
§13.1 非正弦周期信号
生产实际中不完全是正弦电路,经常会遇到非正弦周期电流电路。在电子技术、自动控制、计算机和无线电技术等方面,电压和电流往往都是周期性的非正弦波形。
非正弦周期交流信号的特点:
1) 不是正弦波
2) 按周期规律变化,满足:(k=0,1,2…..)
式中 T 为周期。图 13.1 为一些典型的非正弦周期信号。
图13.1(a)半波整流波形
(b)锯齿波
(c)方波
本章主要讨论非正弦周期电流、电压信号的作用下,线性电路的稳态分析和计算方法。采用谐波分析法,实质上就是通过应用数学中傅里叶级数展开方法,将非正弦周期信号分解为一系列不同频率的正弦量之和,再根据线性电路的叠加定理,分别计算在各个正弦量单独作用下电路中产生的同频率正弦电流分量和电压分量,最后,把所得分量按时域形式叠加得到电路在 非正弦周期激励下的稳态电流和电压。
15
§13.2 周期函数分解为傅里叶级数
电工技术中所遇到的非正弦周期电流、电压信号多能满足展开成傅里叶级数的条件,因而能分解成如下傅里叶级数形式:
也可表示成:
以上两种表示式中系数之间关系为:
上述系数可按下列公式计算:
(k=1,2,3……)
求出a0、ak、bk 便可得到原函数 f(t) 的展开式。
注意: 非正弦周期电流、电压信号分解成傅里叶级数的关键在于求出系数a0、ak、bk ,可以利用函数的某种对称性判断它包含哪些谐波分量及不包含哪些谐波分量,可使系数的确定简化,给计算和分析将带来很大的方便。如以下几种周期函数值得注意:
(1) 偶函数
波形对称与纵轴如图 13.2 所示,
满足:
(2) 奇函数
波形对称与原点如图 13.3 所示,
满足:
(3) 奇谐波函数
波形镜对称如图 13.4 所示,满足:
(4) 若函数是偶函数又是镜对称时,则只含有奇次的余弦相,即
(5) 若函数是奇函数又是镜对称时,则只含有奇次的正弦相,即
图 13.2
图 13.3
图 13.4
实际中所遇到的周期函数可能较复杂,不易看出对称性,但是如果将波形作一定的平移,或视为几个典型波形的合成,则也能使计算各次谐波的系数简化。
例13-1 把图示周期性方波电流分解成傅里叶级数。
例 13-1 图
解:周期性方波电流在一个周期内的函数表示式为:
各次谐波分量的系数为:
( K 为奇数)
因此, 的傅里叶级数展开式为:
即,周期性方波可以看成是直流分量与一次谐波、三次谐波、五次谐波等的叠加,如下图所示。
例13-2 给定函数f(t)的部分波形如图所示。为使f(t)的傅里叶级数中只包含如下的分量:(1)正弦分量;(2)余弦分量;(3)正弦偶次分量;(4)余弦奇次分量。试画出f(t)的波形。
例 13-1 图
解:(1)f(t)的傅里叶级数中只包含正弦分量,说明f(t)为奇函数,对原点对称,可用下图波形表示。
(2) f(t)的傅里叶级数中只包含余弦分量,说明f(t)为偶函数,对坐标纵轴对称,可用下图波形表示。
(3) f(t)的傅里叶级数中只包含正弦偶次分量,可用下图波形表示。
(4) f(t)的傅里叶级数中只包含余弦奇次分量,可用下图波形表示。
§13.3 有效值、平均值和平均功率
1. 三角函数的性质
1)正弦、余弦函数在一个周期内的积分为 0 ,即:
2) sin2 、 cos2 在一个周期内的积分为π ,即:
3)三角函数的正交性如下式所示:
2. 非正弦周期函数的有效值
设非正弦周期电流可以分解为傅里叶级数:
代入有效值的定义式中有:
利用上述三角函数的性质, 上式中 i 的展开式平方后将含有下列各项:
这样可以求得 i 的有效值为:
由此得到结论: 周期函数的有效值为直流分量及各次谐波分量有效值平方和的方根。此结论可以推广用于其他非正弦周期量。
3. 非正弦周期函数的平均值
设非正弦周期电流可以分解为傅里叶级数:
则其平均值定义为:
即:非正弦周期电流的平均值等于此电流绝对值的平均值。按上式可求得正弦电流的平均值为:
注意:
1)测量 非正弦周期电流或电压的有效值要用电磁系或电动系仪表,测量非正弦周期量的平均值要用磁电系仪表。
2)非正弦周期量的有效值和平均值没有固定的比例关系,它们随着波形不同而不同。
4. 非正弦周期交流电路的平均功率
设任意一端口电路的非正弦周期电流和电压可以分解为傅里叶级数:
则一端口的平均功率为:
代入电压、电流表示式并利用三角函数的性质,得:
式中
由此得出结论: 非正弦周期电流电路的平均功率=直流分量的功率+各次谐波的平均功率
§13.4 非正弦周期交流电路的计算
根据以上讨论可得非正弦周期电流电路的计算步骤如下:
(1) 把给定电源的非正弦周期电流或电压作傅里叶级数分解,将非正弦周期量展开 成若干频率的谐波信号;
(2) 利用直流和正弦交流电路的计算方法,对直流和各次谐波激励分别计算其响应;
(3) 将以上计算结果转换为瞬时值迭加。
注意:
1) 交流各次谐波电路计算可应用相量法,
2)对不同的频率,感抗与容抗是不同的。对直流 C 相当于开路、L 相于短路。对 k 次谐波有:
例13-3 电路如图(a)所示,电流源为图(b)所示的 方波信号。求输出电压u0,
已知:
例13-3图(a)
例13-3图(b)
解:计算步骤如下:
(1)由例13-1知方波信号的展开式为:
代入已知数据
得直流分量 基波最大值
三次谐波最大值 五次谐波最大值
角频率为:
因此,电流源各频率的谐波分量表示式为:
(2)对各次频率的谐波分量单独计算
(a)直流分量 IS0 单独作用时:
把电容断路,电感短路,电路如图(c)所示,计算得:
(b)基波单独作用时,
电路如图(a)所示。算得容抗和感抗为
例13-3图(c)
所以阻抗为:
因此
(c) 三次谐波单独作用时,,计算得容抗和感抗为:
阻抗为:
则
(d) 五次谐波单独作用时,,计算得容抗和感抗为:
阻抗为:
则
(3) 把各次谐波分量计算结果的瞬时值迭加:
例13-4 图(a)所示电路中各表读数 (有效值) 及电路吸收的功率。
例 13-4 图(a)
解:(1)当直流分量u0=30V作用于电路时,L1、L2短路,C1、C2开路,电路如图(b)所示
例 13-4 图(b)
所以
(2) 基波 u1=120cos1000tV
L1、C1对基波发生并联谐振。所以,基波电压加于L1、C1并联电路两端,故
,
,
(3) 二次谐波 u2=60cos(2000t+π/4)V 作用于电路,有
L2、C2对二次谐波发生并联谐振。所以,电压加于L2、C2并联电路两端,故
所以电流表 A1=1A A2=
A3=
电压表 V1=
V2=
例13-5 图(a)所示电路中,已知电源 u(t) 是周期函数,波形如图(b)所示,L=1/2πH ,C=125/πμF。求:理想变压器原边电流i1(t)及输出电压u2的有效值。
例 13-5 图(a)
例 13-5 图(b)
解:由图(b)知
当直流分量 u0 =12V 作用于电路时,电容开路、电感短路,有:
当 作用于电路时,有:
图(a)的原边等效电路如图(c)所示。电容和电感发生并联谐振,电源电流为零,因此:
例 13-5 图(c)
则
例13-6 求图示电路中 a、b 两端电压有效值Uab 、电流 i 及功率表的读数。已知:
例13-6图
解:电压有效值
一次谐波作用时:
三次谐波作用时:
所以
功率表读数为
注意:同频率的电压电流构成有功功率。
例13-7 已知图(a)电路中,L=0.1H,C3=1μF,电容C1中只有基波电流,电容C3中只有三次谐波电流,求C1、C2和各支路电流。
例 13-7 图
解:C1 中只有基波电流,说明 L 和 C2 对三次谐波发生并联谐振。所以:
C3 中只有三次谐波电流,说明 L、C1、C2 对一次谐波发生串联谐振。所以:
个次谐波分量单独作用时的电路如图(b)、(c)、(d)所示。由图可计算得:
(b)直流作用
(c)一次谐波作用
(d)三次谐波作用
展开阅读全文