资源描述
一次函数
第4课时.
教学目标
1. 总结函数三种表示方法.
2. 了解三种表示方法的优缺点.
3. 会根据具体情况选择适当方法.
教学重点
1. 认清函数的不同表示方法,知道各自优缺点.
2. 能按具体情况选用适当方法.
教学难点
函数表示方法的应用.
一、导入新课
我们在前几节课里知道函数解析式、列表格、画函数图象,都可以表示具体的函数.这三种表示函数的方法,分别称为解析式法、列表法和图象法.
思考一下,从前面的例子看,你认为三种表示函数的方法各有什么优缺点?在遇到具体问题时,该如何选择适当的表示方法呢?
二、新课教学
从前面几节课所见到的或自己做的练习可以看出.列表法比较直观、准确地表示出函数中两个变量的关系.解析式法则比较准确、全面地表示出了函数中两个变量的关系.至于图象法它则形象、直观地表示出函数中两个变量的关系.
相比较而言,列表法不如解析式法全面,也不如图象法形象;而解析式法却不如列表法直观,不如图象法形象;图象法也不如列表法直观准确,不如解析式法全面.
从全面性、直观性、准确性及形象性四个方面来总结归纳函数三种表示方法的优缺点.
表示方法
全面性
准确性
直观性
形象性
列表法
×
√
√
×
解析式法
√
√
×
×
图象法
×
×
√
√
从所填表中可清楚看到三种表示方法各有优缺点.在遇到实际问题时,就要根据具体情况、具体要求选择适当的表示方法,有时为了全面地认识问题,需要几种方法同时使用.
例4 一个水库的水位在最近5 h内持续上涨.下表记录了这5 h内6个时间点的水位高度,其中t表示时间,y 表示水位高度.
(1)在平面直角坐标系中描出表中数据对应的点,这些点是否在一条直线上?由此你能发现水位变化有什么规律吗?
(2)水位高度y是否为时间t的函数?如果是,试写出一个符合表中数据的函数解析式,并画出这个函数的图象.这个函数能表示水位的变化规律吗?
(3)据估计这种上涨规律还会持续2 h,预测再过2 h水位高度将为多少米.
解:(1)如下图,描出上表中数据对应的点.可以看出,这 6 个点在一条直线上.再结合表中数据,可以发现每小时水位上升0.3 m.由此猜想,如果画出这5 h内其他时刻(如t=2.5 h等)及其水位高度所对应的点,它们可能也在这条直线上,即在这个时间段中水位可能是始终以同一速度均匀上升的.
(2)由于水位在最近5 h内持续上涨,对于时间 t 的每一个确定的值,水位高度y都有唯一的值与其对应,所以y是t的函数.开始时水位高度为3 m,以后每小时水位上升0.3 m.函数
y=0.3t+3(0≤t≤5)
是符合表中数据的一个函数,它表示经过t h水位上升0.3t m,即水位 y为(0.3t+3)m.其图象是下图中点A(0,3)和点B(5,4.5)之间的线段AB.
如果在这5 h 内,水位一直匀速上升,即升速为0.3 m/h,那么函数y=0.3t+3(0≤t≤5)就精确地表示了这种变化规律.即使在这5 h内,水位的升速有些变化,而由于每小时水位上升0.3 m 是确定的,因此这个函数也可以近似地表示水位的变化规律.
(3)如果水位的变化规律不变,则可利用上述函数预测,再过2 h,即 t=5+2=7 (h)时,水位高度
y=0.3×7+3=5.1(m).
把本例第一幅图中的函数图象(线段AB)向右延伸到 t=7 所对应的位置,得到第二幅图,从中也能看出这时的水位高度约为5.1 m.
三、课堂练习: 教材第81页练习1、2、3.
四、布置作业: 习题第19.2第11、12、13题.
教学反思:
展开阅读全文