收藏 分销(赏)

《二次函数的图像和性质》教案.doc

上传人:xrp****65 文档编号:8541795 上传时间:2025-02-17 格式:DOC 页数:4 大小:157KB 下载积分:10 金币
下载 相关 举报
《二次函数的图像和性质》教案.doc_第1页
第1页 / 共4页
《二次函数的图像和性质》教案.doc_第2页
第2页 / 共4页


点击查看更多>>
资源描述
5.4二次函数的图像和性质(1) 教材分析: 本节内容是在学生已经学习过的一次函数、反比例函数的图象与性质,以及二次函数的有关概念的基础上进行的,它既是前面所学知识的应用、拓展,又是对前面所学一次函数、反比例函数图象与性质的一次升华,还是今后学习的基础,在教材中起着非常重要的作用. 教学设计: 本课一开始先让学生回忆用描点法画函数图象的一般步骤和方法,然后根据表中的各对对应值,在直角坐标系中描出相应的各点,用光滑的曲线连接,画出图象.通过画出图象,让学生分析、归纳二次函数的图象与性质. 教学目标: 知识与技能:1.掌握二次函数的图象的作法及其性质,会根据图象用数学语言表达图象的性质. 2.能分清当a>0,a<0时图象之间有什么共同点与不同点. 过程与方法:通过对二次函数图象与性质的发现,提高分析、归纳等能力,体验数学中的数形结合思想的应用. 情感态度和价值观:引导学生养成全面看问题,分类讨论的学习习惯,通过直观多媒体演示和学生动手作图、分析,激发学生学习数学的积极性. 教学重难点: 重点:能在直角坐标系中,正确画出二次函数的图象,并能说出二次函数的图象的性质. 难点:作二次函数图象时要选取适当的点,选取适当数目的点. 课前准备 教具准备 教师准备PPT课件 课时安排:4课时 教学过程: 知识回顾: 一次函数:y=kx+b(k≠0) 图象:直线 反比例函数: (k≠0)图象:双曲线 问:1.如何画出函数图象呢? 2.如何得到相应的性质呢? 【设计意图】: 通过对一次函数和反比例函数解析式、图象的回顾,一方面巩固学生的旧知,另一方面对本节课的学习起到类比作用. 合作探究一: 二次函数y=ax2 (a>0)的图象 请同学们用描点法按下列要求画图: 请A组同学同桌合作画函数y=x2的图象; 请B组同学同桌合作画函数y= 1/2x2的图象 归纳: 二次函数y=ax2 (a>0)的性质 合作探究二: 二次函数y=ax2 (a<0)的图象 请同学们用描点法按下列要求画图: 请A组的同学同桌合作在和抛物线y=x2同一坐标系中画函数y=-x2的图象,并观察; 请B组同学同桌合作在和抛物线y=-1/2 x2同一坐标系中画函数y=-1/2 x2的图象,并观察. 归纳: 二次函数y=ax2 (a<0)的性质 【设计意图】: 在探索性质时,利用课件展示给学生图形,在验证学生图形画的准确的前提下,给出学生一定的提示,从那几个方面进行探索,并先让学生自己探索,然后再与同学交流,这样即锻炼了学生的自学与归纳能力,又培养了学生的合作意识. 当堂检测: 1.对于函数y=2x2,下列结论正确的是( ) A.当x取任何实数时,y的值总是正的 B.x的值增大,y的值也随着增大 C.x的值增大,y的值随着减小 D.图像关于y轴对称 2.分别说出抛物线y=4x2与y=-5x2的开口方向,对称轴与顶点坐标. 3.如何根据函数的图象, (1)根据图象,求当y=2时,对应的x的值(精确到0.1); (2)利用图象,求的√3值(精确到0.1). 4.已知二次函数y=ax2的图象如图,x1<x2,则对应的y值y1,y2大小关系为y1____y2 5.观察上面画的图象回答: (1)在对称轴右边,y随x的增大而______ (2)在对称轴左边y随x的增大而______ 课堂小结: 本节课学习了二次函数y=ax2的图象和性质 作业: 课本 P.33第1,2题 板书设计: 5.4二次函数的图像和性质(1) 知识回顾: 合作探究一:二次函数y=ax2(a>0)的图象 归纳:二次函数y=ax2(a>0)的性质 合作探究二:二次函数y=ax2(a<0)的图象 归纳:二次函数y=ax2(a<0)的性质
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传

当前位置:首页 > 百科休闲 > 其他

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服