资源描述
1.十几乘十几:
口诀:头乘头,尾加尾,尾乘尾。
例:12×14=?
解: 1×1=1
2+4=6
2×4=8
12×14=168
注:个位相乘,不够两位数要用0占位。
2.头相同,尾互补(尾相加等于10):
口诀:一个头加1后,头乘头,尾乘尾。
例:23×27=?
解:2+1=3
2×3=6
3×7=21
23×27=621
注:个位相乘,不够两位数要用0占位。
3.第一个乘数互补,另一个乘数数字相同:
口诀:一个头加1后,头乘头,尾乘尾。
例:37×44=?
解:3+1=4
4×4=16
7×4=28
37×44=1628
注:个位相乘,不够两位数要用0占位。
4.几十一乘几十一:
口诀:头乘头,头加头,尾乘尾。
例:21×41=?
解:2×4=8
2+4=6
1×1=1
21×41=861
5.11乘任意数:
口诀:首尾不动下落,中间之和下拉。
例:11×23125=?
解:2+3=5
3+1=4
1+2=3
2+5=7
2和5分别在首尾
11×23125=254375
注:和满十要进一。
6.十几乘任意数:
口诀:第二乘数首位不动向下落,第一因数的个位乘以第二因数后面每一个数字,加下一位数,再向下落。
例:13×326=?
解:13个位是3
3×3+2=11
3×2+6=12
3×6=18
13×326=4238
注:和满十要进一。
“一分钟速算口诀”,觉得非常好,所以跟大家分享一下:两位数相乘,在十位数相同、个位数相加等于10的情况下,如62×68=4216
计算方法:6×(6+1)=42(前积),2×8=16(后积)。
一分钟速算口诀中对特殊题的定理是:任意两位数乘以任意两位数,只要魏式系数为“0”所得的积,一定是两项数中的尾乘尾所得的积为后积,头乘头(其中一项头加1的和)的积为前积,两积相邻所得的积。
如(1)33×46=1518(个位数相加小于10,所以十位数小的数字3不变,十位大的数4必须加1)
计算方法:3×(4+1)=15(前积),3×6=18(后积)
两积组成1518
如(2)84×43=3612(个位数相加小于10,十位数小的数4不变 十位大的数8加1)
计算方法:4×(8+1)=36(前积),3×4=12(后积)
两积相邻组成:3612
如(3)48×26=1248
计算方法:4×(2+1)=12(前积),6×8=48(后积)
两积组成:1248
如(4)245平方=60025
计算方法24×(24+1)=600(前积),5×5=25
两积组成:60025
ab×cd 魏式系数=(a-c)×d+(b+d-10)×c
“头乘头,尾乘尾,合零为整,补余数。”
1.先求出魏式系数
2.头乘头(其中一项加一)为前积 (适应尾相加为10的数)
3.尾乘尾为后积。
4.两积相连,在十位数上加上魏式系数即可 。
如:76×75,87×84吧,凡是十位数相同个位数相加为11的数,它的魏式系数一定是它的十位数的数 。
如:76×75魏式系数就是7,87×84魏式系数就是8。
如:78×63,59×42,它们的系数一定是十位数大的数减去它的个位数。
例如第一题魏式系数等于7-8=-1,第2题魏式系数等于5-9=-4,只要十位数差一,个位数相加为11的数一律可以采用以上方法速算。
例题1 76×75, 计算方法: (7+1)×7=56 5×6=30 两积组成5630,然后十位数上加上7最后的积为5700。
例题2 78×63,计算方法:7×(6+1)=49,3×8=24,两积组成4924,然后在十位数上2减去1,最后的积为4914
常用速算口诀(三则)
(一)十几与十几相乘
十几乘十几,
方法最容易,
保留十位加个位,
添零再加个位积。
证明:设m、n 为1 至9 的任意整数,则
(10+m)(10+n)
=100+10m+10n+mn
=10〔10+(m+n)〕+mn。
例:17×l6
∵10+ (7+6)=23(第三句),
∴230+7×6=230+42=272(第四句),
∴17×16=272。
(二)十位数字相同、个位数字互补(和为10)的两位数相乘
十位同,个位补,
两数相乘要记住:
十位加一乘十位,
个位之积紧相随。
证明:设m、n 为1 到9 的任意整数,则
(10m+n)〔10m+(10-n)〕
=100m(m+1)+n(10-n)。
例:34×36
∵(3+1)×3=4×3=12(第三句),
个位之积4×6=24,
∴34×36=1224。 (第四句)
注意:两个数之积小于10 时,十位数字应写零。
(三)用11 去乘其它任意两位数
两位数乘十一,
此数两边去,
中间留个空,
用和补进去。
证明:设m、n 为1 至9 的任意整数,则
(10m+n)×(10+1)=100m+10(m+n)+n。
例:36×ll
∵306+90=396,
∴36×11=396。
注意:当两位数字之和大于10 时,要进到百位上,那么百位数数字就成为m+1,
如:
84×11
∵804+12×10=804+120=924,
∴84×11=924。
两位数乘法速算口诀 一般口诀:
首位之积排在前,首尾交叉积之和十倍再加尾数积。如37x64=1828+(3x4+7x6)x10=2368
1、同尾互补,首位乘以大一数,尾数之积后面接。 如:23×27=621
2、尾同首互补,首位之积加上尾,尾数之积后面接。87×27=2349
3、首位差一尾数互补者,大数首尾平方减。如76×64=4864
4、末位皆一者,首位之积接着首位之和,尾数之积后面接。如:51×21=1071
------ “几十一乘几十一”速算 特殊:用于个位是1的平方,如21×21=441
5、首同尾不同,一数加上另数尾,整首倍后加上尾数积。23×25=575
速算1),首位皆一者,一数加上另数尾,十倍加上尾数积。17×19=323---- “十几乘十几”速算 包括了十位是1(即11~19)的平方,如11×11=121---- “十几平方”
速算 2)首位皆二者,一数加上另数尾,廿倍加上尾数积。25×29=725----“二十几乘二十几”
速算 3)首位皆五者,廿五接着尾数积,百位再加尾数之和半。57×57=3249----“五十几乘五十几”
速算 4)首位皆九者,八十加上两尾数,尾补之积后面接。95×99=9405----“九十几乘九十几”
速算 5)首位是四平方者,十五加上尾,尾补平方后面接。46×46=2116---- “四十几平方”
速算 6)首位是五平方者,廿五加上尾,尾数平方后面接。51×51=2601---- “五十几平方”
6、互补乘以叠数者,首位加一乘以叠数头,尾数之积后面接。37×99=3663 7、末位是五平方者,首位加一乘以首,尾数之积后面接。如65×65= 4225---- “几十五平方”
8、某数乘以一一者,首尾拉开,首尾之和中间站。如34×11=3 3+4 4=374 9、某数乘以十五者,原数加上原数的一半后后面加个0(原数是偶数)或小数点往后移一位。如151×15=2265,246×15 =3690
10、一百零几乘一百零几,一数加上另数尾,尾数之积后面接。如108×107=11556
11、俩数差2者,俩数平均数平方再减去一。如49x51=50x50-1=2499
12、几位数乘以几位九者,这个数减去(位数前几位的数+1)的差作积的前几位,末位与个位补足几个0。
1)一个数乘9:这个数减去(个位前几位的数+1)的差作积的前几位,末位与个位补足10 4×9=36 想:个位前是0, 4-(0+1)=3,末位是10-4=6 合起来是36 783×9=7047 想 个位前是78,783-(78+1)=704,末位是10-3=7 合起来是7047
2)一个数乘99:这个数减去(十位前几位的数+1),末两位凑100: 14×99= 14-(0+1)=13, 100-14=86 1386 158×99= 158-(1+1)=156, 100-58=42 15642 7357×99= 7357-(73+1)=7283 100-57=43 728343
3)一个数乘999:可以依照上面的方法进行推理:这个数减去(百位前几位的数+1),末三位凑1000 11234×999= 11234-(11+1)=11222,末三位是1000-234=766,11222766
一、“十位上数字相同,个位上数字互补”的两个两位数相乘
如43×47这样的两位数乘式,两个乘数十位上的数字相等(此例都是4),个位上的数字互补(所谓互补,就是其和为10。此例是3和7),这一类两位数乘法的速算口诀是:
十位乘以大一数,个位之积后面拖。
就以43×47为例来说明口诀的运用。
口诀第一句“十位乘以大一数”的操作是:用4(十位上的数)乘以5(比十位上的数大1的数),得到20。口诀第二句“个位之积后面拖”的操作是:用3乘7得积21,(个位之积)直接写在20的后面(后面拖),得2021就是答案。
需要注意的是当个位数是1和9时,它们的乘积9也是个一位数,在往十位数的乘积后面“拖”的时候,在9的前面要加一个0,即把9看成09。例如91×99,答案不是909而应该是9009。
(速算中遇有小数点时,可先不考虑它,待算出数字后,看两个乘数中一共有几位小数点,在答案中点上就是了。例如每斤1.8元的西红柿,买了1.2斤,该多少钱?1乘2得2,后面拖16(2乘8)得216。点上两位小数点得2.16元。)
二、“十位上数字互补,个位上数字相同”的两个两位数相乘
第一种速算法要求“”而这一类两位数乘法要求的条件恰恰相反,要求“十位上数字互补,个位上数字相同”。这一类两位数乘法的速算口诀是:
个位加上十位积,个位平方后面接
就以47×67为例来说明口诀的运用。
用7(“个位”上的数字)加上24(十位上两个数字的乘积)得31(就是口诀“个位加上十位积”),在31的后面接着写上49(个位数的平方),得3149就是答案。
需要注意的是当个位数的平方也是个一位数时,在 “接”的时候,在其前面要添一个0,即把1看成01;把4看成04;把9看成09。例如23×83,答案不是199而应该是1909。
三、“十几乘十几”
如18×16这样的乘式,两个两位数十位上的数相等而且都是1,但个位上的两个数字则是任意的(并不要求其互补),这就是“十几乘十几”。这一类两位数乘法的速算口诀是:
十几乘十几,好做也好记,一数加上另数个,十倍再加个位积
以18×16为例来说明口诀的运用。
用18(“一数”,即其中的一个数)加上6(另外一个数的个位数,简称“另数个”)得24并将其扩大10倍(后面添个0即可)成240,再加上两个个位数的乘积(6、8得48),所得288就是18×16的答案。
当个位数的乘积也是一位数时,由于这个积是加在前面一个已求出的和数扩大10倍后的那个0上的,所以实际上是直接“拖”在那个“和数”的后面就可以了。
四、二十几乘二十几
如26×27这样的乘式,两个两位数十位上的数相等而且都是2,但个位上的两个数字则是任意的(并不要求其互补),这就是“二十几乘二十几”。这一类两位数乘法的速算口诀是:
一数加上另数个,廿倍再加个位积
以26×27为例来说明口诀的运用。
用26加7得33,“廿倍”就是乘2后再添0,所以得660。再加上42(个位上的6乘7)答案是702。
当个位数的乘积也是一位数时,由于这个积是加在前面一个已求出的和数扩大20倍后的那个0上的,所以实际上是直接“拖”在那个翻倍后的“和数”的后面就可以了。
例如22×23 眼睛一看或是脑子一转就知道是25(22加3)翻倍后得50,后面拖一个6(2×3)答案是506
五、四十几的平方
所谓“四十几”,就是十位数是4的两位数,它的个位数可以是1——9的任意一个数。这样的数一共有9个,即41、42、43、44、45、46、47、48、49。求它们平方的速算口诀有两种。
方法一的口诀:
廿五减去个位补,个补平方后面拖。
以求43的平方为例说明口诀的运用。
用基数25减去个位数的补数(即减去“个位补”此例的个位数是3,其补数是7)得到差数18后,在后面接着写上个位数补数的平方(7的平方)49,得到1849就是答案了。
当“个位数补数的平方”是个一位数时,在“拖”的时候前面要添一个0。
例如求47的平方。个位补是3,被25减得22,个补的平方是9,答案应该是2209而不是229。
这9个数字中,求45平方的速算法与第一种速算法重叠,也就是45的平方既可以适用于第五种速算法,也适用于第一种速算法。
六、五十几的平方
所谓“五十几”,就是十位数是5的两位数,它的个位数可以是1——9的任意一个数。这样的数一共有9个,即51、52、53、54、55、56、57、58、59。求它们平方的速算口诀是:
廿五加上个位数,个位平方后面拖。
以求58的平方为例说明口诀的运用。
用基数25加上个位数8得33,个位数8的平方是64,把64写在33后面得3364这就是答案了。(此法不用“补数”)
七、“十位数相差1,个位数互补”的两位数相乘
如37×43、62×58、81×99这样的乘式就是“十位数相差1,个位数互补”的两位数相乘。这类乘式的速算方法也有两种。
方法一的口诀:
大十平方减去一,小个添零加个积,前后相接在一起。
以求62×58为例说明口诀的运用。
因为62比58大,所以把62叫做“大数”,58叫做“小数”。口诀中的“大十”指的是“大数”十位上的数字;“小个”指的是“小数”个位上的数字,而不一定是比较小的那个各位数。如本例中的“小个”是8而不是2,“个积”是指个位数的乘积。
用6(“大十”)的平方36减去1得35。再用80(“小个添0”)加上16(“个积”)得96。答案就是3596。
八、九十几乘九十几
九十几乘九十几,虽然数字挺大,却也有速算的办法。这个命题的代数式是:
(90+a)(90+b)考虑到九十几已经接近100了(差一个补数),因此可以利用一下补数。令a的补数是c,b的补数是d, 则有:
(90+a)(90+b)=(100-c)(100-d)
=10000-100c-100d+cd
=100(100-c-d)+cd
这个式子表明:九十几乘九十几可以这样来速算:用100减去两个乘数个位数的补数,再在后面拖上两个乘数个位数补数的乘积即可。
例如97×98,用100减去3(7的补数)和2(8的补数)得95,而补数的乘积是6(06)所以答案就是9506。为了便于记忆,可以编成这样的口诀:
两个个补被百减,个补乘积后面写。
由于100(100-c-d)+cd这个式子还可以变化,所以“九十几乘九十几”还有一种速算法。因为c和a互补,b和d互补,所以c=10-a,d=10-b代入到上式的括号中得:
100(100-c-d)+cd=100[100-(10-a)-(10-b)]+cd
=100(100-10+a-10+b)+cd
=100(80+a+b)+cd
这个式子表明:九十几乘九十几也可以这样来速算:用80(基数)加上两个乘数的个位数,后面再接写个位数补数的乘积即可。
仍以97×98为例。80加上7和8得95,后面接写06(7和8的补数2和3的乘积)得9506就是答案了。为了便于记忆,也可以编成这样的口诀:
八十加两个位数,个补乘积后面拖。
附
九、一百零几乘一百零几
这种乘法极容易做。只要将其中一个数加上另一个数的个位数,后面再写上两个个位数的乘积就是了。
例如:108×107
用108加上7(或用107加上8)得115 再在其后写上56(7×8的积)得11556就是答案了。
如果一定要编两句口诀,那么可以这样说:
一数加上另数个,个位乘积后面凑。
此速算法的代数证明相当简单,这里就不赘述了。
十、某数乘以十五
某数乘以15可以看作乘以1.5再乘以10。而某数乘以1.5就是原数加上它的一半。
所以某数乘以15只要用原数加上原数的一半后后面加个0(原数是偶数)或小数点往后移一位就可以了。
如246×15 用246加上它的一半123得369 后面加个0得3690就是答案了。
如151×15 用151加上它的一半75.5得226.5 把小数点往后移一位得2265就是答案了。
两位数乘法速算口诀 一般口诀:
首位之积排在前,首尾交叉积之和十倍再加尾数积。如37x64=1828+(3x4+7x6)x10=2368
1、同尾互补,首位乘以大一数,尾数之积后面接。 如:23×27=621
2、尾同首互补,首位之积加上尾,尾数之积后面接。87×27=2349
3、首位差一尾数互补者,大数首尾平方减。如76×64=4864
4、末位皆一者,首位之积接着首位之和,尾数之积后面接。如:51×21=1071
------ “几十一乘几十一”速算 特殊:用于个位是1的平方,如21×21=441
5、首同尾不同,一数加上另数尾,整首倍后加上尾数积。23×25=575
速算1),首位皆一者,一数加上另数尾,十倍加上尾数积。17×19=323---- “十几乘十几”速算 包括了十位是1(即11~19)的平方,如11×11=121---- “十几平方”
速算 2)首位皆二者,一数加上另数尾,廿倍加上尾数积。25×29=725----“二十几乘二十几”
速算 3)首位皆五者,廿五接着尾数积,百位再加尾数之和半。57×57=3249----“五十几乘五十几”
速算 4)首位皆九者,八十加上两尾数,尾补之积后面接。95×99=9405----“九十几乘九十几”
速算 5)首位是四平方者,十五加上尾,尾补平方后面接。46×46=2116---- “四十几平方”
速算 6)首位是五平方者,廿五加上尾,尾数平方后面接。51×51=2601---- “五十几平方”
6、互补乘以叠数者,首位加一乘以叠数头,尾数之积后面接。37×99=3663 7、末位是五平方者,首位加一乘以首,尾数之积后面接。如65×65= 4225---- “几十五平方”
8、某数乘以一一者,首尾拉开,首尾之和中间站。如34×11=3 3+4 4=374 9、某数乘以十五者,原数加上原数的一半后后面加个0(原数是偶数)或小数点往后移一位。如151×15=2265,246×15 =3690
10、一百零几乘一百零几,一数加上另数尾,尾数之积后面接。如108×107=11556
11、俩数差2者,俩数平均数平方再减去一。如49x51=50x50-1=2499
12、几位数乘以几位九者,这个数减去(位数前几位的数+1)的差作积的前几位,末位与个位补足几个0。
1)一个数乘9:这个数减去(个位前几位的数+1)的差作积的前几位,末位与个位补足10 4×9=36 想:个位前是0, 4-(0+1)=3,末位是10-4=6 合起来是36 783×9=7047 想 个位前是78,783-(78+1)=704,末位是10-3=7 合起来是7047
2)一个数乘99:这个数减去(十位前几位的数+1),末两位凑100: 14×99= 14-(0+1)=13, 100-14=86 1386 158×99= 158-(1+1)=156, 100-58=42 15642 7357×99= 7357-(73+1)=7283 100-57=43 728343
3)一个数乘999:可以依照上面的方法进行推理:这个数减去(百位前几位的数+1),末三位凑1000 11234×999= 11234-(11+1)=11222,末三位是1000-234=766,11222766
展开阅读全文