收藏 分销(赏)

人教版九年级上册数学旋转变化中的压轴题.doc

上传人:pc****0 文档编号:7970994 上传时间:2025-01-29 格式:DOC 页数:4 大小:135.50KB 下载积分:10 金币
下载 相关 举报
人教版九年级上册数学旋转变化中的压轴题.doc_第1页
第1页 / 共4页
人教版九年级上册数学旋转变化中的压轴题.doc_第2页
第2页 / 共4页


点击查看更多>>
资源描述
拔高专题:旋转变化中的压轴题 一、基本模型构建 常见模型 思考 上图中,△AE′B旋转到AED的位置,可得△AE′E为 等腰 三角形。如果四边形ABCD是矩形或正方形,则三角形AE′E为等腰直角三角形。 上图中,△ABC旋转到△ADE的位置,可以得到∠EAC= ∠DAB ,如果∠B=60°,所以△ADB为 等边 三角形. 二、拔高精讲精练 探究点一:以三角形为基础的图形的旋转变换 例1:(2015•盘锦中考)如图1,△ABC和△AED都是等腰直角三角形,∠BAC=∠EAD=90°,点B在线段AE上,点C在线段AD上. (1)请直接写出线段BE与线段CD的关系: BE=CD ; (2)如图2,将图1中的△ABC绕点A顺时针旋转角α(0<α<360°), ①(1)中的结论是否成立?若成立,请利用图2证明;若不成立,请说明理由; ②当AC=ED时,探究在△ABC旋转的过程中,是否存在这样的角α,使以A、B、C、D四点为顶点的四边形是平行四边形?若存在,请直接写出角α的度数;若不存在,请说明理由. 解:(1)∵△ABC和△AED都是等腰直角三角形,∠BAC=∠EAD=90°,∴AB=AC,AE=AD, ∴AE-AB=AD-AC,∴BE=CD; (2)①∵△ABC和△AED都是等腰直角三角形,∠BAC=∠EAD=90°,∴AB=AC,AE=AD, 由旋转的性质可得∠BAE=∠CAD,在△BAE与△CAD中,, ∴△BAE≌△CAD(SAS),∴BE=CD; ②∵以A、B、C、D四点为顶点的四边形是平行四边形,△ABC和△AED都是等腰直角三角形, ∴∠ABC=∠ADC=45°,∵AC=ED,∴AC=CD,∴∠CAD=45°,或360°-90°-45°=225°, ∴角α的度数是45°或225°. 等腰直角三角形的性质,等量代换,旋转的性质,全等三角形的判定和性质,平行四边形的判定和性质,综合性较强 【变式训练】1. 如图①,在Rt△ABC和Rt△EDC中,∠ACB=∠ECD=90°,AC=EC=BC=DC,AB与EC交于F,ED与AB、BC分别交于M、H. (1)求证:CF=CH; (2)如图②,Rt△ABC不动,将Rt△EDC绕点C旋转到∠BCE=45°时,判断四边形ACDM的形状,并证明你的结论. (1)证明:∵∠ACB=∠ECD=90°,AC=BC=CD=CE,∴∠1=∠2=90°-∠BCE,∠A=∠B=∠D=∠E=45°, 在△ACF和△DCH中,,∴△ACF≌△DCH,∴CF=CH; (2)四边形ACDM是菱形,证明:∵∠ACB=∠ECD=90°,∠BCE=45°,∴∠1=∠2=90°-45°=45°, ∵∠A=∠D=45°,∴∠A+∠ACD=45°+90°+45°=180°,同理∠D+∠ACD=180°,∴AM∥DC,AC∥DM, ∴四边形ACDM是平行四边形,∵AC=CD,∴四边形ACDM是菱形. 【教师总结】三角形从一个位置旋转到另一个位置,除去对应线段和对应角相等外,里面也存在着相等的角,和全等三角形,在解决问题过程要善于将“基本图形”分离出来分析。 探究点二 以四边形为基础的图形的旋转变换 例2:根据图形回答问题: (1)线段AB上任取一点C,分别以AC和BC为边作等边三角形,试回答△ACE可看作哪个三角形怎么样旋转得到.(不用说明理由) (2)线段AB上任取一点C,分别以AC和BC为边作正方形,连接DG,M为DG中点,连接EM并延长交FG于N,连接FM,猜测FM和EM的关系,并说明理由. (3)在(2)的基础上将正方形CBGF绕C点旋转,其它条件不变,猜测FM和EM的关系,并说明理由. 解:(1)将△ACE以点C为旋转中心,顺时针方向旋转60°后得到△DCB,所以可得△ACE可以由△DCB以C点为轴逆时针旋转60度得到. (2)FM⊥ME,FM=ME,连接GN和DE, 在△DME和△GMN中,, ∴△DME≌△GMN(AAS),∴DM=MN,DE=NG,∴FN=FG-NG=FG-DE=FC-EC=FE, ∴△NFE是等腰直角三角形, ∴FM⊥ME,并且FM=ME(等腰三角形中线就是垂线,直角三角形中线等于斜边的一半) (3)延长EM至N点,使EM=MN,连接NG、EF、FN.(EC与DM的交点标为P,FC与DM交点标为Q) 在△DME和△GMN中,,∴△DME≌△GMN.∴DE=NG,∠EDM=∠NGM, ∴EC=NG,∵∠ECF=180°-∠CPQ-∠CQP=180°-∠DPE-∠FQG=180°-(90°-∠MDE)-(90°-∠FGM)=∠EDM+∠FGM,∵∠NGM+∠FGM=∠NGF,∴∠ECF=∠NGF,∵EC=DE=NG, 在△ECF和△NGF中,,∴△ECF≌△NGF,∴EF=NF,∠EFC=∠NFG, ∴∠EMN=∠EFC+∠CFN=∠NFG+∠CFN=∠CFG=90°,∴△EFN是等腰直角三角形,∴FM⊥EM,并且FM=EM。 【变式训练】2. 两个长为2cm,宽为1cm的长方形,摆放在直线l上(如图①),CE=2cm,将长方形ABCD绕着点C顺时针旋转α角,将长方形EFGH绕着点E逆时针旋转相同的角度. (1)当旋转到顶点D、H重合时,连接AE、CG,求证:△AED≌△GCD(如图②). (2)当α=45°时(如图③),求证:四边形MHND为正方形. 证明:(1)如图②,∵由题意知,AD=GD,ED=CD,∠ADC=∠GDE=90°, ∴∠ADC+∠CDE=∠GDE+∠CDE,即∠ADE=∠GDC,在△AED与△GCD中,, ∴△AED≌△GCD(SAS); (2)如图③,∵α=45°,BC∥EH,∴∠NCE=∠NEC=45°,CN=NE,∴∠CNE=90°, ∴∠DNH=90°,∵∠D=∠H=90°,∴四边形MHND是矩形,∵CN=NE,∴DN=NH,∴矩形MHND是正方形. 【教师总结】四边形的旋转,可以构造全等三角形,在根据旋转的性质画出相应的图形,再综合其他知识解决. .
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传

当前位置:首页 > 百科休闲 > 其他

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2026 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服