资源描述
北师大版小学六年级数学上册《圆的面积》教学设计
【教学内容】北师大版小学数学第十一册第一单元16页—18页 “圆的面积”
【教学目标】
1、了解圆的面积的含义,经历圆面积计算公式的推导过程,掌握圆面积计算公式。
2、能正确运用圆的面积公式计算圆的面积,并能运用圆面积知识解决一些简单实际的问题。
3、 在估一估和探究圆面积公式的活动中,体会“化曲为直”的思想,初步感受极限思想。
【教学重点】 圆面积概念的建立,公式的推导及应用。
【教学难点】 理解把圆转化为平行四边形、长方形推倒出圆的面积的计算公式的过程。
【教具准备】投影仪,多媒体课件,等分好的圆形纸片。
【学具准备】等分好的圆形纸片。
【教学设计】
一、创设情境。(出示P16中草坪喷水插图):
提出问题
师:同学们,这是现代化农田里的一个自动喷水头,喷射的距离为5米,你们谁知道喷水头喷射一周,我们得到了一个什么样的图形?
[学生回答:圆形]
[课件演示喷射过程,理解什么是圆的面积]
你们想知道这样一个自动喷水头它喷射一周浇灌的农田面积是多少吗?这节课我们就来学习如何求喷水头转动一周浇灌的面积有多大。(板书:圆的面积)
二、 探究思考。解决问题
1、估计圆面积大小
(出示P16中插图)
用边长等于半径的小正方形透明塑料片,直接度量圆面积,(如图)观察后得出圆面积比4个小正方形小,好象又比3 个小正方形大一些。初步猜想:圆的面积相当于r2的3倍多。
由此看出,要求圆的精确面积通过度量是无法得出的。
三、 探索规律
1、 由旧知引入新知
我们在学习推导几何图形的面积公式时,总是把新的图形经过分割、拼合等办法,将它们转化成我们熟悉的图形, 大家还记得我们以前学习的平行四边形、三角形、梯形面积分别是由哪些图形的面积推导来的吗?今天我们能不能也用这样的方法推导出圆面积的计算公式呢?
2、 探索圆面积公式
(1) 学生操作
师:请大家拿出准备好的16等分的圆,和小组同学一起剪一剪,拼一拼,看看能拼成一个什么图形?并考虑你拼成的图形与原来的圆形有什么关系?(同学们开始操作,教师巡视)
(2)指名汇报
初步汇报:你们把圆转换成了什么图形?(在学生说的同时教师课件演示)
(3)操作反思
小组内拿出32等分的圆形,剪一剪,拼成一个平行四边形,和用16等分的圆拼成的平行四边形比较你发现了什么? [32等份后拼成的图形更接近于平行四边形] (课件演示)
如果把一个圆等分成64份、128份……拼成的平行四边形会怎样呢? (圆等分的份数越多,拼成的图形越接近于长方形。)
(4)转化思考:近似平行四边形的底相当于圆的哪一部分?怎样用字母表示?
(圆周长的一半,C/2=πr),它的高是圆的哪一部分?(半径r)(课件演示)
(5)观察汇报:
你能否由平行四边形的面积公式得到圆形面积公式呢?并说出你的理由。 [ 因为拼成的平行四边形的底也就是圆形周长的一半,平行四边形的高就是圆形的半径。而平行四边形面积=底×高,那么,圆形面积=圆周长的1/2×半径即可。]
(生说,教师板书)用字母怎么表示圆面积公式呢?(课件演示)
S=πr2
你能否由长方形的面积公式得到圆形面积公式呢?(课件演示) 并说出你的理由。
(6)练习:教材18页第一题。(学生练习,教师巡视指导)(集体交流)
(7)升华:今天我们探究出了圆的面积计算公式,真了不起,在人们没有总结出这个公式的时候,如何计算圆的面积,是各国数学家共同关心的问题。老师这里有一段小故事,大家一起来读一读。
课件出示内容:刘徽在校注《九章算术》时,创立了一种新的数学方法——“割圆术”来进行有关圆的计算。《九章算术》中已有圆面积的计算公式,但没有说明是怎么来的,刘徽为此苦苦思索,有一次他看见石匠在加工石料,石匠把一块方石砍去四角,就变成八角形的石头,再去掉八个角又变成了十六角形,这样一凿一斧地干下去,一块方形石料就被加工成一根光滑的圆柱了。刘徽因此得到启发:原来圆与直线是可以相互转化的。他认为一个圆的内接正多边形的边数越多,其周长就会越接近于圆的周长。同时,通过求圆内接正多边形的边长和圆的直径之比,可以越来越精确地求得圆周率(即圆周与直径之比),这就是所谓“割圆术”。“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣。”这句话简明扼要地概括了刘徽割圆术的实质。同时,刘徽在这里还用了“极限”这个数学概念,今天我们知道“极限”是高等数学的基础。后来,祖冲之和他的儿子祖恒,利用割圆术,得出了3.1415926<π<3.1415927 。没有前人这样艰苦的努力,我们现在就不可能精确地计算出圆的面积和周长,一切与圆有关的计算无疑也要大打折扣了。
读了这个故事,你想说点什么?
学生谈谈感受:看来生活中处处有数学,我们要培养自己热爱数学,善于观察的良好习惯哦。
下面我们就一起来动脑筋解决以下下面的问题,看谁能过关斩将笑到最后!
四:拓展应用
第一关:
(1)圆的周长计算公式为( ),圆的面积计算公式为( )。
(2)一个圆的半径是3厘米,求它的周长,列式( ),求它的面积,列式( )。
(3)一个圆的周长是18.84分米,这个圆的直径是( )分米,面积是( )平方分米。
第二关:
(1)半径是2厘米的圆,周长和面积相等( )【让孩子知道得数虽然相同,但计量单位不同,不能进行比较。】
(2)一个圆形纽扣的半径是1.5厘米,它的面积是多少?列式:3.14 X 1.52=3.14 X 3=9.42平方厘米。( )。【此题在计算1.52的时候把1.52看作1.5 X 2是不正确的,而1.52=1.5 X 1.5】
(3)直径相等的两个圆,面积不一定相等。( )
(4)一个圆的半径扩大3倍,面积也扩大3倍。( )
(5)两个不一样大的圆,大圆的圆周率比小圆的圆周率大。( )
第三关:
(1)如下图,绳长2.17米,问小狗的活动面积有多大?
(2)北京天坛公园的回音壁是世界闻[内容来于斐-斐_课-件_园 FFKJ.Net]名的声学奇迹,它是一道圆形围墙。圆的直径约为65.2米,周长和面积分别是多少?(结果保留一位小数)
同学们,经过一番激烈的竞争,个个都是最棒的,我们在以后的学习中还应发扬竞争精神,合作学习,争取更大进步!
五 课下实践练习:
师:经过一节课的学习,你们能计算出喷水头转动一周可以浇灌多大面积的农田了吗? (学生独立解答,指名回答)
圆形的物体生活中随处可见,公园的露天广场是个圆形,怎样才能计算广场的面积呢?你有哪些方案?
【让学生讨论,并留给学生课后去实践。这样,使学生意犹未尽,感到课虽尽,但疑未了,为下一课已知周长求面积埋下伏笔。】
板书设计:
3.圆 的 面 积
平行四边形的面积=底×高
圆的面积=πr×r =πr2
S=πr2
展开阅读全文