1、单击此处编辑母版标题样式,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,2015/9/23/Wednesday,#,等比数列的性质,学习目标,复习等比数列的定义、公比、等比中项等概念,复习,等比数列的判定方法,.,类比等差数列的性质猜想并证明等比数列的性质,.,体会类比、分类讨论的数学思想以及归纳、猜想、证,明的过程,.,复习回顾,1,.,等比数列的定义:,如果一个数列从,起,每一项与它的前一项的,等于,,那么这个数列叫做等比数列,.,这个常数叫做等比数列的,,,公比通常用字母,表示,(),第,2,项,比,同一常数,注意:等比数列的任意一项和公比都不能为零!,公比,q,q,0,正负
2、相间摆动数列,非零的常数列,相同,相同,q,0,且,q,1,3,.,如果在,a,与,b,中间插入一个数,G,,,使,a,,,G,,,b,成,,那么,G,叫做,a,与,b,的,.,等比数列,等比中项,注意:,1,G,是,a,与,b,的等比中项,则,a,与,b,的符号,,符号相反的两个实数不存在等比中项,G,,即等比中项有,,且互为,2,当,G,2,ab,时,,G,不一定是,a,与,b,的等比中项,例如,0,2,5,0,,但,0,0,5,不是等比数列,.,相同,两个,相反数,4,.,等比数列的通项公式,注意,:,从方程的观点看等比数列的通项公式,,a,n,a,1,q,n,-,1,中包含了四个量,a
3、,n,、,a,1,、,q,、,n,,已知其中的任意,个量,可以求得,个量,三,另一,a,n,a,1,q,n,-,1,5.,等比数列的判定,(1),定义法,:,q,(,q,为常数且,q,0),或,q,(,q,为常数且,q,0,,,n,2),a,n,为等比数列,(2),等比中项法,:,(,a,n,0,,,n,N,*,),a,n,为等比数列,(3),通项公式法,:,a,n,a,1,q,n,1,(,其中,a,1,,,q,为非零常数,,,n,N,*,),a,n,为等比数列,新课讲授,(1),在,等差数列,a,n,中,若,m,n,s,t,则,a,m,a,n,a,s,a,t,.,(1),在,等比数列,a,n
4、,中,若,m,n,s,t,则,.,猜想,证明:设等差数列,a,n,的首项为,a,1,公差为,d,则,a,m,a,n,a,1,+,(,m,-1),d,+,a,1,+(,n,-1),d,2,a,1,+,(,m+n,-2),d,2,a,1,+,(,s,t,-2),d,a,1,+,(,s,-1),d,+,a,1,+(,t,-1),d,a,s,a,t,证明:设等比数列,a,n,的首项为,a,1,公比为,q,则,a,m,a,n,a,1,q,m,-1,a,1,q,n,-1,a,1,a,1,q,m+n,-2,a,1,a,1,q,s+t,-2,a,1,q,s,-1,a,1,q,t,-1,a,s,a,t,1,.,
5、等比数列的性质,思路:先把,a,m,、,a,n,用基本量,表示再求和,a,m,a,n,a,s,a,t,(2),在,等差数列,a,n,中,若,m,n,2,k,,,则,a,m,a,n,2,a,k,.,(2),在,等比数列,a,n,中,若,m,n,2,k,,,则,.,证明:,m,n,2,k,k,k,a,m,a,n,a,k,a,k,2,a,k,猜想,证明:,m,n,2,k,k,k,a,m,a,n,a,k,a,k,a,k,2,a,m,a,n,a,k,2,等差数列,a,n,的这两条性质可以概括为:,下标之和相等,则通项之,和,相等,.,等比数列,a,n,的这两条性质可以概括为:,下标之和相等,则通项之,积
6、,相等,.,(3),对,等差数列,a,n,中,任意两项,a,m,a,n,,都有,a,n,a,m,(,n,-,m,),d,.,证明:由等差数列,a,n,的通项公式得,a,n,a,1,(,n,-1),d,a,m,a,1,(,m,-1),d,-,得,a,n,-,a,m,(,n,-,m,),d,a,n,a,m,(,n,-,m,),d,猜想,证明:由等比数列,a,n,的通项公式得,a,n,a,1,q,n,-1,a,m,a,1,q,m,-1,得,a,n,a,m,q,n,-,m,a,n,a,m,q,n,-,m,(3),对,等比数列,a,n,任意两项,a,m,a,n,,,都有,.,a,n,a,m,q,n,-,
7、m,性质,等差数列,等比数列,1,若,m,n,s,t,,,则,a,m,a,n,a,s,a,t,.,若,m,n,s,t,,,则,a,m,a,n,a,s,a,t,.,2,若,m,n,2,k,,,则,a,m,a,n,2,a,k,.,若,m,n,2,k,,,则,a,m,a,n,a,k,2,.,相同点,不同点,3,a,n,中任意两项,a,m,a,n,都有,a,n,a,m,(,n,-,m,),d,.,a,n,中任意两,a,m,a,n,,都有,a,n,a,m,q,n,-,m,等差、等比数列的性质,等式左右两边都有两项,等式左右两边都是两项的,和,等式左右两边都是两项的,积,在等比数列,a,n,中,判断下列等
8、式是否成立,辨析,典型例题,例,2,已知数列,a,n,是等比数列,,a,3,a,7,20,,,a,1,a,9,64,,求,a,11,的值,性质应用,20,4,6,4,课堂达标,2,10,性质,等差数列,等比数列,1,若,m,n,s,t,,,则,a,m,a,n,a,s,a,t,.,若,m,n,s,t,,,则,a,m,a,n,a,s,a,t,.,2,若,m,n,2,k,,,则,a,m,a,n,2,a,k,.,若,m,n,2,k,,,则,a,m,a,n,a,k,2,.,相同点,不同点,3,a,n,中任意两项,a,m,,,a,n,,都有,a,n,a,m,(,n,-,m,),d,.,a,n,中任意两项,a,m,,,a,n,,都有,a,n,a,m,q,n,-,m,等差、等比数列,a,n,通项公式的性质,等式左右两边都有两项,等式左右两边都是两项的,和,等式左右两边都是两项的,积,小结,作业,:,课时跟踪检测,(,十一,),作业,