收藏 分销(赏)

高考典型题集锦3:概率与统计.doc

上传人:pc****0 文档编号:7790282 上传时间:2025-01-17 格式:DOC 页数:8 大小:394KB
下载 相关 举报
高考典型题集锦3:概率与统计.doc_第1页
第1页 / 共8页
高考典型题集锦3:概率与统计.doc_第2页
第2页 / 共8页
高考典型题集锦3:概率与统计.doc_第3页
第3页 / 共8页
高考典型题集锦3:概率与统计.doc_第4页
第4页 / 共8页
高考典型题集锦3:概率与统计.doc_第5页
第5页 / 共8页
点击查看更多>>
资源描述

1、2012高考典型题集锦3: 概率与统计 北京市海淀区夏繁军整理 xiafanjun681.【2012高考湖北理20】(本小题满分12分)根据以往的经验,某工程施工期间的降水量X(单位:mm)对工期的影响如下表:降水量X工期延误天数02610历年气象资料表明,该工程施工期间降水量X小于300,700,900的概率分别为0.3,0.7,0.9. 求:()工期延误天数的均值与方差; ()在降水量X至少是的条件下,工期延误不超过6天的概率. 1.【答案】()由已知条件和概率的加法公式有:,.所以的分布列为:026100.30.40.20.1 于是,;. 故工期延误天数的均值为3,方差为. ()由概率的

2、加法公式,又. 由条件概率,得.故在降水量X至少是mm的条件下,工期延误不超过6天的概率是. 2.【2012高考江苏25】(10分)设为随机变量,从棱长为1的正方体的12条棱中任取两条,当两条棱相交时,;当两条棱平行时,的值为两条棱之间的距离;当两条棱异面时, (1)求概率; (2)求的分布列,并求其数学期望2【答案】解:(1)若两条棱相交,则交点必为正方体8个顶点中的一个,过任意1个顶点恰有3条棱, 共有对相交棱。 。 (2)若两条棱平行,则它们的距离为1或,其中距离为的共有6对, ,。 随机变量的分布列是:01 其数学期望。 【考点】概率分布、数学期望等基础知识。【解析】(1)求出两条棱相

3、交时相交棱的对数,即可由概率公式求得概率。 (2)求出两条棱平行且距离为的共有6对,即可求出,从而求出(两条棱平行且距离为1和两条棱异面),因此得到随机变量的分布列,求出其数学期望。3.【2012高考江西理18】(本题满分12分)如图,从A1(1,0,0),A2(2,0,0),B1(0,2,0),B2(0,2,0),C1(0,0,1),C2(0,0,2)这6个点中随机选取3个点,将这3个点及原点O两两相连构成一个“立体”,记该“立体”的体积为随机变量V(如果选取的3个点与原点在同一个平面内,此时“立体”的体积V=0)。(1)求V=0的概率;(2)求V的分布列及数学期望。3.解:(1)从6个点中

4、随机地选取3个点共有种选法,选取的3个点与原点O在同一个平面上的选法有种,因此V=0的概率(2)V的所有可能值为,因此V的分布列为V0P由V的分布列可得:EV=【点评】本题考查组合数,随机变量的概率,离散型随机变量的分布列、期望等. 高考中,概率解答题一般有两大方向的考查.一、以频率分布直方图为载体,考查统计学中常见的数据特征:如平均数,中位数,频数,频率等或古典概型;二、以应用题为载体,考查条件概率,独立事件的概率,随机变量的期望与方差等.来年需要注意第一种方向的考查.4.【2012高考安徽理17】(本小题满分12分)某单位招聘面试,每次从试题库随机调用一道试题,若调用的是类型试题,则使用后

5、该试题回库,并增补一道类试题和一道类型试题入库,此次调题工作结束;若调用的是类型试题,则使用后该试题回库,此次调题工作结束。试题库中现共有道试题,其中有道类型试题和道类型试题,以表示两次调题工作完成后,试题库中类试题的数量。()求的概率;()设,求的分布列和均值(数学期望)。4.【答案】本题考查基本事件概率、条件概率,离散型随机变量及其分布列,均值等基础知识,考查分类讨论思想和应用于创新意识。【解析】(I)表示两次调题均为类型试题,概率为()时,每次调用的是类型试题的概率为,随机变量可取,。答:()的概率为, ()求的均值为。5.【2012高考山东理19】(19)(本小题满分12分) 先在甲、

6、乙两个靶.某射手向甲靶射击一次,命中的概率为,命中得1分,没有命中得0分;向乙靶射击两次,每次命中的概率为,每命中一次得2分,没有命中得0分.该射手每次射击的结果相互独立.假设该射手完成以上三次射击.()求该射手恰好命中一次得的概率;()求该射手的总得分的分布列及数学期望.5.解:()记“该射手恰好命中一次”为事件;“该射手设计甲靶命中”为事件;“该射手第一次射击乙靶命中”为事件;“该射手第二次射击乙靶命中”为事件 由题意知, 由于,根据事件的独立性与互斥性得 ()根据题意,的所以可能取值为 根据事件的独立性和互斥性得 , ,故的分布列为012345 所以6.【2012高考北京理17】(本小题

7、共13分)近年来,某市为了促进生活垃圾的风分类处理,将生活垃圾分为厨余垃圾、可回收物和其他垃圾三类,并分别设置了相应分垃圾箱,为调查居民生活垃圾分类投放情况,现随机抽取了该市三类垃圾箱中总计1000吨生活垃圾,数据统计如下(单位:吨):“厨余垃圾”箱“可回收物”箱“其他垃圾”箱厨余垃圾400100100可回收物3024030其他垃圾202060()试估计厨余垃圾投放正确的概率;()试估计生活垃圾投放错误额概率;()假设厨余垃圾在“厨余垃圾”箱、“可回收物”箱、“其他垃圾”箱的投放量分别为其中a0,=600。当数据的方差最大时,写出的值(结论不要求证明),并求此时的值。(注:,其中为数据的平均数

8、)6.解:(1)由题意可知:。(2)由题意可知:。(3)由题意可知:,因此有当,时,有7.【2012高考陕西理20】(本小题满分13分)某银行柜台设有一个服务窗口,假设顾客办理业务所需的时间互相独立,且都是整数分钟,对以往顾客办理业务所需的时间统计结果如下:从第一个顾客开始办理业务时计时。(1)估计第三个顾客恰好等待4分钟开始办理业务的概率;(2)表示至第2分钟末已办理完业务的顾客人数,求的分布列及数学期望。7.【解析】设Y表示顾客办理业务所需的时间,用频率估计概率,的Y的分布如下:Y12345P0.10.40.30.10.1(1) A表示事件“第三个顾客恰好等待4分钟开始办理业务”,则时间A

9、对应三种情形: 一个谷歌办理业务所需时间为1分钟,且第二个顾客办理业务所需的时间为3分钟; 第一个顾客办理业务所需的时间为3分钟,且第二个顾客办理业务所需的时间为1分钟; 第一个和第二个顾客办理业务所需的时间均为2分钟。所以(2)解法一:X所有可能的取值为:0,1,2.X=0对应第一个顾客办理业务所需的时间超过2分钟,所以;X=1对应第一个顾客办理业务所需的时间为1分钟且第二个顾客办理业务所需时间超过1分钟,或第一个顾客办理业务所需的时间为2分钟,所以;X=2对应两个顾客办理业务所需的时间均为1分钟,所以;所以X的分布列为X012P0.50.490.01.解法二:X所有可能的取值为0,1,2.

10、X=0对应第一个顾客办理业务所需的时间超过2分钟,所以;X=2对应两个顾客办理业务所需的时间均为1分钟,所以;所以X的分布列为X012P0.50.490.01。8.【2012高考天津理16】(本小题满分13分)现有4个人去参加某娱乐活动,该活动有甲、乙两个游戏可供参加者选择.为增加趣味性,约定:每个人通过掷一枚质地均匀的骰子决定自己去参加哪个游戏,掷出点数为1或2的人去参加甲游戏,掷出点数大于2的人去参加乙游戏.()求这4个人中恰有2人去参加甲游戏的概率;()求这4个人中去参加甲游戏的人数大于去参加乙游戏的人数的概率;用X,Y分别表示这4个人中去参加甲、乙游戏的人数,记,求随机变量的分布列与数

11、学期望.8.【答案】(1)每个人参加甲游戏的概率为,参加乙游戏的概率为 这4个人中恰有2人去参加甲游戏的概率为(2),这4个人中去参加甲游戏的人数大于去参加乙游戏的人数的概率为(3)可取 随机变量的分布列为 .【点评】应用性问题是高考命题的一个重要考点,近年来都通过概率问题来考查,且常考常新,对于此类考题,要注意认真审题,从数学与实际生活两个角度来理解问题的实质,将问题成功转化为古典概型,独立事件、互斥事件等概率模型求解,因此对概率型应用性问题,理解是基础,转化是关键.9.【2012高考辽宁理19】(本小题满分12分)电视传媒公司为了解某地区电视观众对某类体育节目的收视情况,随机抽取了100名

12、观众进行调查.下面是根据调查结果绘制的观众日均收看该体育节目时间的频率分布直方图:将日均收看该体育节目时间不低于40分钟的观众称为“体育迷”(1)根据已知条件完成下面的列联表,并据此资料你是否认为“体育迷“与性别有关?非体育迷体育迷合计男女1055合计(2)将上述调查所得到的频率视为概率.现在从该地区大量电视观众中,采用随机抽样方法每次抽取1名观众,抽取3次,记被抽取的3名观众中的“体育迷“人数为.若每次抽取的结果是相互独立的,求的分布列,期望和方差附:,0.050.013.8416.6359.【命题意图】本题主要考查频率分布直方图的应用、独立性检验、随机变量的分布列、期望、方差计算,考查运用

13、所学知识解决实际问题能力,是中档题.【解析】(1)由频率分布直方图可知,在抽取的100人中,“体育迷”有25人,从而列联表如下:非体育迷体育迷合计男301545 女451055合计7525100将列联表中的数据代入公式计算,得 3分因为,所以没有理由认为“体育迷”与性别有关. 6分 (2)由频率分布直方图知抽到“体育迷”的频率为0.25,将频率视为概率,即从观众中抽取一名“体育迷”的概率为.由题意,从而的分布列为0123 10分,. 12分【点评】本题主要考查统计中的频率分布直方图、独立性检验、离散型随机变量的分布列,期望和方差,考查分析解决问题的能力、运算求解能力,难度适中。准确读取频率分布直方图中的数据是解题的关键。8

展开阅读全文
部分上传会员的收益排行 01、路***(¥15400+),02、曲****(¥15300+),
03、wei****016(¥13200+),04、大***流(¥12600+),
05、Fis****915(¥4200+),06、h****i(¥4100+),
07、Q**(¥3400+),08、自******点(¥2400+),
09、h*****x(¥1400+),10、c****e(¥1100+),
11、be*****ha(¥800+),12、13********8(¥800+)。
相似文档                                   自信AI助手自信AI助手
搜索标签

当前位置:首页 > 百科休闲 > 其他

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服