收藏 分销(赏)

stata回归结果详解PPT课件.pptx

上传人:可**** 文档编号:777597 上传时间:2024-03-13 格式:PPTX 页数:27 大小:2.32MB
下载 相关 举报
stata回归结果详解PPT课件.pptx_第1页
第1页 / 共27页
stata回归结果详解PPT课件.pptx_第2页
第2页 / 共27页
stata回归结果详解PPT课件.pptx_第3页
第3页 / 共27页
stata回归结果详解PPT课件.pptx_第4页
第4页 / 共27页
stata回归结果详解PPT课件.pptx_第5页
第5页 / 共27页
点击查看更多>>
资源描述

1、stata回归结果详解付畅俭湘潭大学商学院1-数据来源于贾俊平统计学(第7版),第12章多元线性回归noyx1x2x3x410.967.36.8551.921.1111.319.81690.934.81737.71773.743.280.87.21014.557.8199.716.51963.262.716.22.212.271.6107.410.71720.2812.5185.427.11843.89196.11.71055.9102.672.89.11464.3110.364.22.11142.7124132.211.22376.7130.858.661422.8143.5174.612.

2、726117.11510.2263.515.634146.716379.38.91529.9170.214.80.6242.1180.473.55.91125.319124.75413.4206.8139.47.22864.32111.6368.216.832163.9221.695.73.81044.5231.2109.610.31467.9247.2196.215.81639.7253.2102.2121097.12-3-第二列SS对应的是误差平方和,或称变差。1.第一行为回归平方和或回归变差SSR,表示因变量的预测值对其平均值的总偏差。2.第二行为剩余平方和(也称残差平方和或剩余变差)S

3、SE,是因变量对其预测值的总偏差,这个数值越大,拟合效果越差,y的标准误差即由SSE给出。3.第三行为总平方和或总变差SST,表示因变量对其平均值的总偏差。4.容易验证249.37+63.28=312.65第三列df是自由度(degree of freedom),第一行是回归自由度dfr,等于变量数目,即dfr=m;第二行为残差自由度dfe,等于样本数目减去变量数目再减1,即有dfe=n-m-1;第三行为总自由度dft,等于样本数目减1,即有dft=n-1。对于本例,m=4,n=10,因此,dfr=4,dfe=n-m-1=20,dft=n-1=24。第四列MS是均方差,误差平方和除以相应的自由

4、度1.第一行为回归均方差MSR2.第二行为剩余均方差MSE,数值越小拟合效果越好1.方差分析4-F值,用于线性关系的判定。结合P值对线性关系的显著性进行判断,即弃真概率。所谓“弃真概率”即模型为假的概率,显然1-P便是模型为真的概率,P值越小越好。对于本例,P=0.00000.0001,故置信度达到99.99%以上。R-Squared为判定系数(determination coefficient),或称拟合优度(goodness of fit),它是相关系数的平方,也是SSR/SST,y的总偏差中自变量解释的部分。Adjusted对应的是校正的判定系数Root MSE为标准误差(standar

5、d error),数值越小,拟合的效果越好2.模型显著性5-回归系数回归系数标准误差T值T值=Coef./Std.Err.P值置信区间置信区间(CI)0.0145294-invttail(20,0.025)*0.0830332=0.0145294-2.086*0.0830332=-0.15867480.0145294+2.086*0.0830332=0.18773353.回归系数检验P值用于说明回归系数的显著性,一般来说P值0.1(*)表示10%显著水平显著,P值0.05(*)表示5%显著水平显著,P值0.01(*)表示1%显著水平显著6-4.系数标准误差计算当自变量只有两个时,R2j就是这两

6、个变量的相关系数(pwcorr x2 x1)的平方7-对多元回归“排除其它变量影响”的解释8-9-简单回归和多元回归估计值的比较.03789471=.0289094+.1678986 *.053516310-tw(function t=tden(20,x),range(-3 3),xline(0.17 2.086)ttail(df,t)=p 计算单边P值双边时P值加倍就行了如:ttail(20,0.17498)*2=0.863 invttail(df,p)=t 计算单边临界值在双边95%置信度,5%显著水平时的临界值为:t0=invttail(20,0.025)=2.0862.0860.17t

7、0t0.0145294-invttail(20,0.025)*0.0830332=0.0145294-2.086*0.0830332=-0.15867480.0145294+2.086*0.0830332=0.18773355.系数置信区间11-Stata中查临界值和p值normalden(z)normal(z)invnormal(p)tden(df,t)t(df,t)invt(df,p)ttail(df,t)invttail(df,p)chi2den(df,x)chi2(df,x)invchi2(df,p)chi2tail(df,x)invchi2tail(df,p)Fden(df1,df2

8、,x)F(df1,df2,x)invF(df1,df2,p)Ftail(df1,df2,x)invFtail(df1,df2,p)Ftail(2,702,3.96)=0.0195=1-F(2,702,3.96)12-6.回归结果的评价(1)通过模型F检验说明线性关系是否成立。(2)回归系数符号是否与理论或预期相一致。(3)通过系数t检验说明y 与x关系统计显著性。(4)用判定系数说明回归模型在多大程度上解释了因变量y 取值的差异。(5)画残差直方图或正态概率图考察误差项 的正态性假定是否成立。13-7.多重共线性判断出现下列情况,暗示存在多重共线性:(1)模型中各对自变量之间显著相关(相关系数

9、检验)。(2)当模型的线性关系F检验显著时,几乎所有回归系数的t 检验都不显著。(3)回归系数的正负号与预期的相反。(4)容忍度(tolerance)与方差扩大因子(variance inflation factor,VIF)。某个自变量的容忍度等于1 减去该自变量对其他k-1 个自变量的线性回归的判定系数,容忍度越小,多重共线性越严重。方差扩大因子等于容忍度的倒数,VIF 越大,多重共线性越严重,一般认为容忍度小于0.1、VIF 大于10 时,存在严重的多重共线性。14-X3的VIF=3.83=1/(1-0.7392)=1/(0.2608)=1/容忍度15-不存在完全共线性假设,允许自变量之

10、间存在相关关系,只是不能完全相关1、一个变量是另一个变量的常数倍,如同时放入不同度量单位的同一变量2、同一变量的不同非线性函数可以成为回归元,如consumeincome+income2但ln(consume)ln(income)+ln(income2)共线性,应为ln(consume)ln(income)+(lnincome)23、一个自变量是两个或多个自变量和线性函数16-回归模型中包含无关变量17-遗漏变量偏误18-遗漏遗漏相关变量偏误相关变量偏误 采用遗漏相关变量的模型进行估计而带来的偏误称为遗漏相关变量偏误遗漏相关变量偏误(omitting relevant variable bia

11、s)。设正确的模型为 Y=0+1X1+2X2+却对 Y=0+1X1+v进行回归,得19-将正确模型 Y=0+1X1+2X2+的离差形式 代入得(1)如果漏掉的X2与X1相关,则上式中的第二项在小样本下求期望与大样本下求概率极限都不会为零,从而使得OLSOLS估估计量在小样本下有偏,在大样本下非一致计量在小样本下有偏,在大样本下非一致。20-(2)如果X2与X1不相关,则1的估计满足无偏性与一致性;但这时0的估计却是有偏的。由 Y=0+1X1+v 得由 Y=0+1X1+2X2+得如果X2与X1相关,显然有如果X2与X1不相关,也有Why?21-22-23-24-25-回归分析之联合检验无约束模型:约束后面q个变量:原假设:备选假设:H1:其中至少一个不等于0检验F统计量:26-Reg y x1-x4Test x2 x3 x4Reg y x127-

展开阅读全文
部分上传会员的收益排行 01、路***(¥15400+),02、曲****(¥15300+),
03、wei****016(¥13200+),04、大***流(¥12600+),
05、Fis****915(¥4200+),06、h****i(¥4100+),
07、Q**(¥3400+),08、自******点(¥2400+),
09、h*****x(¥1400+),10、c****e(¥1100+),
11、be*****ha(¥800+),12、13********8(¥800+)。
相似文档                                   自信AI助手自信AI助手
百度文库年卡

猜你喜欢                                   自信AI导航自信AI导航
搜索标签

当前位置:首页 > 包罗万象 > 大杂烩

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服