资源描述
Modbus通讯协议
目录
Modbus 协议简介
1. 在Modbus网络上转输
2. 在其它类型网络上转输
3. 查询—回应周期
两种传输方式
Modbus 协议简介
1. 在Modbus网络上转输
2. 在其它类型网络上转输
3. 查询—回应周期
两种传输方式
展开
编辑本段Modbus 协议简介
Modbus 协议是应用于电子控制器上的一种通用语言。通过此协议,控制器相互之间、控制器经由网络(例如以太网)和其它设备之间可以通信。它已经成为一通用工业标准。有了它,不同厂商生产的控制设备可以连成工业网络,进行集中监控。此协议定义了一个控制器能认识使用的消息结构,而不管它们是经过何种网络进行通信的。它描述了一控制器请求访问其它设备的过程,如果回应来自其它设备的请求,以及怎样侦测错误并记录。它制定了消息域格局和内容的公共格式。
当在一Modbus网络上通信时,此协议决定了每个控制器须要知道它们的设备地址,识别按地址发来的消息,决定要产生何种行动。如果需要回应,控制器将生成反馈信息并用Modbus协议发出。在其它网络上,包含了Modbus协议的消息转换为在此网络上使用的帧或包结构。这种转换也扩展了根据具体的网络解决节地址、路由路径及错误检测的方法。
在Modbus网络上转输
标准的Modbus口是使用一RS-232C兼容串行接口,它定义了连接口的针脚、电缆、信号位、传输波特率、奇偶校验。控制器能直接或经由Modem组网。
控制器通信使用主—从技术,即仅一设备(主设备)能初始化传输(查询)。其它设备(从设备)根据主设备查询提供的数据作出相应反应。典型的主设备:主机和可编程仪表。典型的从设备:可编程控制器。
主设备可单独和从设备通信,也能以广播方式和所有从设备通信。如果单独通信,从设备返回一消息作为回应,如果是以广播方式查询的,则不作任何回应。Modbus协议建立了主设备查询的格式:设备(或广播)地址、功能代码、所有要发送的数据、一错误检测域。
从设备回应消息也由Modbus协议构成,包括确认要行动的域、任何要返回的数据、和一错误检测域。如果在消息接收过程中发生一错误,或从设备不能执行其命令,从设备将建立一错误消息并把它作为回应发送出去。
在其它类型网络上转输
在其它网络上,控制器使用对等技术通信,故任何控制都能初始和其它控制器的通信。这样在单独的通信过程中,控制器既可作为主设备也可作为从设备。提供的多个内部通道可允许同时发生的传输进程。
在消息位,Modbus协议仍提供了主—从原则,尽管网络通信方法是“对等”。如果一控制器发送一消息,它只是作为主设备,并期望从从设备得到回应。同样,当控制器接收到一消息,它将建立一从设备回应格式并返回给发送的控制器。
查询—回应周期
(1)查询
查询消息中的功能代码告之被选中的从设备要执行何种功能。数据段包含了从设备要执行功能的任何附加信息。例如功能代码03是要求从设备读保持寄存器并返回它们的内容。数据段必须包含要告之从设备的信息:从何寄存器开始读及要读的寄存器数量。错误检测域为从设备提供了一种验证消息内容是否正确的方法。
(2)回应
如果从设备产生一正常的回应,在回应消息中的功能代码是在查询消息中的功能代码的回应。数据段包括了从设备收集的数据:象寄存器值或状态。如果有错误发生,功能代码将被修改以用于指出回应消息是错误的,同时数据段包含了描述此错误信息的代码。错误检测域允许主设备确认消息内容是否可用。
编辑本段两种传输方式
控制器能设置为两种传输模式(ASCII或RTU)中的任何一种在标准的Modbus网络通信。用户选择想要的模式,包括串口通信参数(波特率、校验方式等),在配置每个控制器的时候,在一个Modbus网络上的所有设备都必须选择相同的传输模式和串口参数。
所选的ASCII或RTU方式仅适用于标准的Modbus网络,它定义了在这些网络上连续传输的消息段的每一位,以及决定怎样将信息打包成消息域和如何解码。
在其它网络上(象MAP和Modbus Plus)Modbus消息被转成与串行传输无关的帧。
1、ASCII模式
当控制器设为在Modbus网络上以ASCII(美国标准信息交换代码)模式通信,在消息中的每个8Bit字节都作为两个ASCII字符发送。这种方式的主要优点是字符发送的时间间隔可达到1秒而不产生错误。
代码系统
· 十六进制,ASCII字符0...9,A...F
· 消息中的每个ASCII字符都是一个十六进制字符组成
每个字节的位
· 1个起始位
· 7个数据位,最小的有效位先发送
· 1个奇偶校验位,无校验则无
CRC域是两个字节,包含一16位的二进制值。它由传输设备计算后加入到消息中。接收设备重新计算收到消息的CRC,并与接收到的CRC域中的值比较,如果两值不同,则有误。
CRC是先调入一值是全“1”的16位寄存器,然后调用一过程将消息中连续的8位字节各当前寄存器中的值进行处理。仅每个字符中的8Bit数据对CRC有效,起始位和停止位以及奇偶校验位均无效。
CRC产生过程中,每个8位字符都单独和寄存器内容相或(OR),结果向最低有效位方向移动,最高有效位以0填充。LSB被提取出来检测,如果LSB为1,寄存器单独和预置的值或一下,如果LSB为0,则不进行。整个过程要重复8次。在最后一位(第8位)完成后,下一个8位字节又单独和寄存器的当前值相或。最终寄存器中的值,是消息中所有的字节都执行之后的CRC值。
CRC添加到消息中时,低字节先加入,然后高字节。
CRC简单函数如下:
unsigned short CRC16(puchMsg, usDataLen)
unsigned char *puchMsg ; /* 要进行CRC校验的消息 */
unsigned short usDataLen ; /* 消息中字节数 */
{
unsigned char uchCRCHi = 0xFF ; /* 高CRC字节初始化 */
unsigned char uchCRCLo = 0xFF ; /* 低CRC 字节初始化 */
unsigned uIndex ; /* CRC循环中的索引 */
while (usDataLen--) /* 传输消息缓冲区 */
{
uIndex = uchCRCHi ^ *puchMsgg++ ; /* 计算CRC */
uchCRCHi = uchCRCLo ^ auchCRCHi[uIndex} ;
uchCRCLo = auchCRCLo[uIndex] ;
}
return (uchCRCHi << 8 uchCRCLo) ;
}
/* CRC 高位字节值表 */
static unsigned char auchCRCHi[] = {
0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0,
0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41,
0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0,
0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40,
0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1,
0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41,
0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1,
0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41,
0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0,
0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40,
0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1,
0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40,
0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0,
0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40,
0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0,
0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40,
0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0,
0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41,
0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0,
0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41,
0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0,
0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40,
0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1,
0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41,
0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0,
0x80, 0x41, 0x00, 0xC1, 0x81, 0x40
} ;
/* CRC低位字节值表*/
static char auchCRCLo[] = {
0x00, 0xC0, 0xC1, 0x01, 0xC3, 0x03, 0x02, 0xC2, 0xC6, 0x06,
0x07, 0xC7, 0x05, 0xC5, 0xC4, 0x04, 0xCC, 0x0C, 0x0D, 0xCD,
0x0F, 0xCF, 0xCE, 0x0E, 0x0A, 0xCA, 0xCB, 0x0B, 0xC9, 0x09,
0x08, 0xC8, 0xD8, 0x18, 0x19, 0xD9, 0x1B, 0xDB, 0xDA, 0x1A,
0x1E, 0xDE, 0xDF, 0x1F, 0xDD, 0x1D, 0x1C, 0xDC, 0x14, 0xD4,
0xD5, 0x15, 0xD7, 0x17, 0x16, 0xD6, 0xD2, 0x12, 0x13, 0xD3,
0x11, 0xD1, 0xD0, 0x10, 0xF0, 0x30, 0x31, 0xF1, 0x33, 0xF3,
0xF2, 0x32, 0x36, 0xF6, 0xF7, 0x37, 0xF5, 0x35, 0x34, 0xF4,
0x3C, 0xFC, 0xFD, 0x3D, 0xFF, 0x3F, 0x3E, 0xFE, 0xFA, 0x3A,
0x3B, 0xFB, 0x39, 0xF9, 0xF8, 0x38, 0x28, 0xE8, 0xE9, 0x29,
0xEB, 0x2B, 0x2A, 0xEA, 0xEE, 0x2E, 0x2F, 0xEF, 0x2D, 0xED,
0xEC, 0x2C, 0xE4, 0x24, 0x25, 0xE5, 0x27, 0xE7, 0xE6, 0x26,
0x22, 0xE2, 0xE3, 0x23, 0xE1, 0x21, 0x20, 0xE0, 0xA0, 0x60,
0x61, 0xA1, 0x63, 0xA3, 0xA2, 0x62, 0x66, 0xA6, 0xA7, 0x67,
0xA5, 0x65, 0x64, 0xA4, 0x6C, 0xAC, 0xAD, 0x6D, 0xAF, 0x6F,
0x6E, 0xAE, 0xAA, 0x6A, 0x6B, 0xAB, 0x69, 0xA9, 0xA8, 0x68,
0x78, 0xB8, 0xB9, 0x79, 0xBB, 0x7B, 0x7A, 0xBA, 0xBE, 0x7E,
0x7F, 0xBF, 0x7D, 0xBD, 0xBC, 0x7C, 0xB4, 0x74, 0x75, 0xB5,
0x77, 0xB7, 0xB6, 0x76, 0x72, 0xB2, 0xB3, 0x73, 0xB1, 0x71,
0x70, 0xB0, 0x50, 0x90, 0x91, 0x51, 0x93, 0x53, 0x52, 0x92,
0x96, 0x56, 0x57, 0x97, 0x55, 0x95, 0x94, 0x54, 0x9C, 0x5C,
0x5D, 0x9D, 0x5F, 0x9F, 0x9E, 0x5E, 0x5A, 0x9A, 0x9B, 0x5B,
0x99, 0x59, 0x58, 0x98, 0x88, 0x48, 0x49, 0x89, 0x4B, 0x8B,
0x8A, 0x4A, 0x4E, 0x8E, 0x8F, 0x4F, 0x8D, 0x4D, 0x4C, 0x8C,
0x44, 0x84, 0x85, 0x45, 0x87, 0x47, 0x46, 0x86, 0x82, 0x42,
0x43, 0x83, 0x41, 0x81, 0x80, 0x40
} ;
ModBus网络是一个工业通信系统,由带智能终端的可编程序控制器和计算机通过公用线路或局部专用线路连接而成。其系统结构既包括硬件、亦包括软件。它可应用于各种数据采集和过程监控。下表1是ModBus的功能码定义。
表1 ModBus功能码
01 READ COIL STATUS
02 READ INPUT STATUS
03 READ HOLDING REGISTER
04 READ INPUT REGISTER
05 WRITE SINGLE COIL
06 WRITE SINGLE REGISTER
15 WRITE MULTIPLE COIL
16 WRITE MULTIPLE REGISTER
ModBus网络只是一个主机,所有通信都由他发出。网络可支持247个之多的远程从属控制器,但实际所支持的从机数要由所用通信设备决定。采用这个系统,各PC可以和中心主机交换信息而不影响各PC执行本身的控制任务。
(1)ModBus的传输方式
在ModBus系统中有2种传输模式可选择。这2种传输模式与从机PC通信的能力是同等的。选择时应视所用ModBus主机而定,每个ModBus系统只能使用一种模式,不允许2种模式混用。一种模式是ASCII(美国信息交换码),另一种模式是RTU(远程终端设备)这两种模式的定义见表3
表3 ASCII和RTU传输模式的特性
ASCII可打印字符便于故障检测,而且对于用高级语言(如Fortan)编程的主计算机及主PC很适宜。RTU则适用于机器语言编程的计算机和PC主机。
用RTU模式传输的数据是8位二进制字符。如欲转换为ASCII模式,则每个RTU字符首先应分为高位和低位两部分,这两部分各含4位,然后转换成十六进制等量值。用以构成报文的ASCII字符都是十六进制字符。ASCII模式使用的字符虽是RTU模式的两倍,但ASCII数据的译玛和处理更为容易一些,此外,用RTU模式时报文字符必须以连续数据流的形式传送,用ASCII模式,字符之间可产生长达1s的间隔,以适应速度较快的机器。
(2)ModBus的数据校验方式
CRC-16(循环冗余错误校验)
CRC-16错误校验程序如下:报文(此处只涉及数据位,不指起始位、停止位和任选的奇偶校验位)被看作是一个连续的二进制,其最高有效位(MSB)首选发送。报文先与X↑16相乘(左移16位),然后看X↑16+X↑15+X↑2+1除,X↑16+X↑15+X↑2+1可以表示为二进制数11000000000000101。整数商位忽略不记,16位余数加入该报文(MSB先发送),成为2个CRC校验字节。余数中的1全部初始化,以免所有的零成为一条报文被接收。经上述处理而含有CRC字节的报文,若无错误,到接收设备后再被同一多项式(X↑16+X↑15+X↑2+1)除,会得到一个零余数(接收设备核验这个CRC字节,并将其与被传送的CRC比较)。全部运算以2为模(无进位)。
习惯于成串发送数据的设备会首选送出字符的最右位(LSB-最低有效位)。而在生成CRC情况下,发送首位应是被除数的最高有效位MSB。由于在运算中不用进位,为便于操作起见,计算CRC时设MSB在最右位。生成多项式的位序也必须反过来,以保持一致。多项式的MSB略去不记,因其只对商有影响而不影响余数。
生成CRC-16校验字节的步骤如下:
①装如一个16位寄存器,所有数位均为1。
②该16位寄存器的高位字节与开始8位字节进行“异或”运算。运算结果放入这个16位寄存器。
③把这个16寄存器向右移一位。
④若向右(标记位)移出的数位是1,则生成多项式1010000000000001和这个寄存器进行“异或”运算;若向右移出的数位是0,则返回③。
⑤重复③和④,直至移出8位。
⑥另外8位与该十六位寄存器进行“异或”运算。
⑦重复③~⑥,直至该报文所有字节均与16位寄存器进行“异或”运算,并移位8次。
⑧这个16位寄存器的内容即2字节CRC错误校验,被加到报文的最高有效位。
另外,在某些非ModBus通信协议中也经常使用CRC16作为校验手段,而且产生了一些CRC16的变种,他们是使用CRC16多项式X↑16+X↑15+X↑2+1,单首次装入的16位寄存器为0000;使用CRC16的反序X↑16+X↑14+X↑1+1,首次装入寄存器值为0000或FFFFH。
LRC(纵向冗余错误校验)
LRC错误校验用于ASCII模式。这个错误校验是一个8位二进制数,可作为2个ASCII十六进制字节传送。把十六进制字符转换成二进制,加上无循环进位的二进制字符和二进制补码结果生成LRC错误校验(参见图)。这个LRC在接收设备进行核验,并与被传送的LRC进行比较,冒号(:)、回车符号(CR)、换行字符(LF)和置入的其他任何非ASCII十六进制字符在运算时忽略不计。
下表是Modbus支持的功能码:
功能码
名称
作用
01
读取线圈状态
取得一组逻辑线圈的当前状态(ON/OFF)
02
读取输入状态
取得一组开关输入的当前状态(ON/OFF)
03
读取保持寄存器
在一个或多个保持寄存器中取得当前的二进制值
04
读取输入寄存器
在一个或多个输入寄存器中取得当前的二进制值
05
强置单线圈
强置一个逻辑线圈的通断状态
06
预置单寄存器
把具体二进值装入一个保持寄存器
07
读取异常状态
取得8个内部线圈的通断状态,这8个线圈的地址由控制器决定
08
回送诊断校验
把诊断校验报文送从机,以对通信处理进行评鉴
09
编程(只用于484)
使主机模拟编程器作用,修改PC从机逻辑
10
控询(只用于484)
可使主机与一台正在执行长程序任务从机通信,探询该从机是否已完成其操作任务,仅在含有功能码9的报文发送后,本功能码才发送
11
读取事件计数
可使主机发出单询问,并随即判定操作是否成功,尤其是该命令或其他应答产生通信错误时
12
读取通信事件记录
可是主机检索每台从机的ModBus事务处理通信事件记录。如果某项事务处理完成,记录会给出有关错误
13
编程(184/384 484 584)
可使主机模拟编程器功能修改PC从机逻辑
14
探询(184/384 484 584)
可使主机与正在执行任务的从机通信,定期控询该从机是否已完成其程序操作,仅在含有功能13的报文发送后,本功能码才得发送
15
强置多线圈
强置一串连续逻辑线圈的通断
16
预置多寄存器
把具体的二进制值装入一串连续的保持寄存器
17
报告从机标识
可使主机判断编址从机的类型及该从机运行指示灯的状态
18
(884和MICRO 84)
可使主机模拟编程功能,修改PC状态逻辑
19
重置通信链路
发生非可修改错误后,是从机复位于已知状态,可重置顺序字节
20
读取通用参数(584L)
显示扩展存储器文件中的数据信息
21
写入通用参数(584L)
把通用参数写入扩展存储文件,或修改之
22~64
保留作扩展功能备用
65~72
保留以备用户功能所用
留作用户功能的扩展编码
73~119
非法功能
120~127
保留
留作内部作用
128~255
保留
用于异常应答
在这些功能码中较长使用的是1、2、3、4、5、6号功能码,使用它们即可实现对下位机的数字量和模拟量的读写操作。
1、读可读写数字量寄存器(线圈状态):
计算机发送命令:[设备地址] [命令号01] [起始寄存器地址高8位] [低8位] [读取的寄存器数高8位] [低8位] [CRC校验的低8位] [CRC校验的高8位]
例:[11][01][00][13][00][25][CRC低][CRC高]
意义如下:
<1>设备地址:在一个485总线上可以挂接多个设备,此处的设备地址表示想和哪一个设备通讯。例子中为想和17号(十进制的17是十六进制的11)通讯。
<2>命令号01:读取数字量的命令号固定为01。
<3>起始地址高8位、低8位:表示想读取的开关量的起始地址(起始地址为0)。比如例子中的起始地址为19。
<4>寄存器数高8位、低8位:表示从起始地址开始读多少个开关量。例子中为37个开关量。
<5>CRC校验:是从开头一直校验到此之前。在此协议的最后再作介绍。此处需要注意,CRC校验在命令中的高低字节的顺序和其他的相反。
设备响应:[设备地址] [命令号01] [返回的字节个数][数据1][数据2]...[数据n][CRC校验的低8位] [CRC校验的高8位]
例:[11][01][05][CD][6B][B2][0E][1B][CRC低][CRC高]
意义如下:
<1>设备地址和命令号和上面的相同。
<2>返回的字节个数:表示数据的字节个数,也就是数据1,2...n中的n的值。
<3>数据1...n:由于每一个数据是一个8位的数,所以每一个数据表示8个开关量的值,每一位为0表示对应的开关断开,为1表示闭合。比如例子中,表示20号(索引号为19)开关闭合,21号断开,22闭合,23闭合,24断开,25断开,26闭合,27闭合...如果询问的开关量不是8的整倍数,那么最后一个字节的高位部分无意义,置为0。
<4>CRC校验同上。
2、读只可读数字量寄存器(输入状态):
和读取线圈状态类似,只是第二个字节的命令号不再是1而是2。
3、写数字量(线圈状态):
计算机发送命令:[设备地址] [命令号05] [需下置的寄存器地址高8位] [低8位] [下置的数据高8位] [低8位] [CRC校验的低8位] [CRC校验的高8位]
例:[11][05][00][AC][FF][00][CRC低][CRC高]
意义如下:
<1>设备地址和上面的相同。
<2>命令号:写数字量的命令号固定为05。
<3>需下置的寄存器地址高8位,低8位:表明了需要下置的开关的地址。
<4>下置的数据高8位,低8位:表明需要下置的开关量的状态。例子中为把该开关闭合。注意,此处只可以是[FF][00]表示闭合[00][00]表示断开,其他数值非法。
<5>注意此命令一条只能下置一个开关量的状态。
设备响应:如果成功把计算机发送的命令原样返回,否则不响应。
4、读可读写模拟量寄存器(保持寄存器):
计算机发送命令:[设备地址] [命令号03] [起始寄存器地址高8位] [低8位] [读取的寄存器数高8位] [低8位] [CRC校验的低8位] [CRC校验的高8位]
例:[11][03][00][6B][00][03][CRC低][CRC高]
意义如下:
<1>设备地址和上面的相同。
<2>命令号:读模拟量的命令号固定为03。
<3>起始地址高8位、低8位:表示想读取的模拟量的起始地址(起始地址为0)。比如例子中的起始地址为107。
<4>寄存器数高8位、低8位:表示从起始地址开始读多少个模拟量。例子中为3个模拟量。注意,在返回的信息中一个模拟量需要返回两个字节。
设备响应:[设备地址] [命令号03] [返回的字节个数][数据1][数据2]...[数据n][CRC校验的低8位] [CRC校验的高8位]
例:[11][03][06][02][2B][00][00][00][64][CRC低][CRC高]
意义如下:
<1>设备地址和命令号和上面的相同。
<2>返回的字节个数:表示数据的字节个数,也就是数据1,2...n中的n的值。例子中返回了3个模拟量的数据,因为一个模拟量需要2个字节所以共6个字节。
<3>数据1...n:其中[数据1][数据2]分别是第1个模拟量的高8位和低8位,[数据3][数据4]是第2个模拟量的高8位和低8位,以此类推。例子中返回的值分别是555,0,100。
<4>CRC校验同上。
5、读只可读模拟量寄存器(输入寄存器):
和读取保存寄存器类似,只是第二个字节的命令号不再是2而是4。
6、写单个模拟量寄存器(保持寄存器):
计算机发送命令:[设备地址] [命令号06] [需下置的寄存器地址高8位] [低8位] [下置的数据高8位] [低8位] [CRC校验的低8位] [CRC校验的高8位]
例:[11][06][00][01][00][03][CRC低][CRC高]
意义如下:
<1>设备地址和上面的相同。
<2>命令号:写模拟量的命令号固定为06。
<3>需下置的寄存器地址高8位,低8位:表明了需要下置的模拟量寄存器的地址。
<4>下置的数据高8位,低8位:表明需要下置的模拟量数据。比如例子中就把1号寄存器的值设为3。
<5>注意此命令一条只能下置一个模拟量的状态。
设备响应:如果成功把计算机发送的命令原样返回,否则不响应。
本文来自电子工程师之家:
展开阅读全文