1、课题15:函数的和、差、积、商的导数教学目的:1.理解两个函数的和(或差)的导数法则,学会用法则求一些函数的导数2.理解两个函数的积的导数法则,学会用法则求乘积形式的函数的导数 3.能够综合运用各种法则求函数的导数 教学重点:用定义推导函数的和、差、积、商的求导法则教学难点:函数的积、商的求导法则的推导 授课类型:新授课 教学过程:一、复习引入: 常见函数的导数公式:;(k,b为常数) ; ; 二、讲解新课:例1.求的导数.法则1 两个函数的和(或差)的导数,等于这两个函数的导数的和(或差),即 法则2常数与函数的积的导数,等于常数与函数的积的导数法则3两个函数的积的导数,等于第一个函数的导数
2、乘以第二个函数,加上第一个函数乘以第二个函数的导数,即 证明:令,则-+-, +因为在点x处可导,所以它在点x处连续,于是当时,从而+ ,法则4 两个函数的商的导数,等于分子的导数与分母的积,减去分母的导数与分子的积,再除以分母的平方,即 三、讲解范例:例1 求下列函数的导数1、y=x2+sinx的导数.2、求的导数(两种方法) 3、求下列函数的导数4、y=5x10sinx2cosx9,求y5、求y=的导数.变式:(1)求y=在点x=3处的导数.(2) 求y=cosx的导数.例2求y=tanx的导数.例3求满足下列条件的函数(1) 是三次函数,且(2)是一次函数, 变式:已知函数f(x)=x3
3、+bx2+cx+d的图象过点P(0,2),且在点M处(-1,f(-1)处的切线方程为6x-y+7=0,求函数的解析式四、课堂练习:1.求下列函数的导数:(1)y= (2)y= (3)y=五、小结 :由常函数、幂函数及正、余弦函数经加、减、乘运算得到的简单的函数均可利用求导法则与导数公式求导,而不需要回到导数的定义去求此类简单函数的导数,商的导数法则()=(v0),如何综合运用函数的和、差、积、商的导数法则,来求一些复杂函数的导数.要将和、差、积、商的导数法则记住 六、课后作业:七、教后反思:附件1:律师事务所反盗版维权声明附件2:独家资源交换签约学校名录(放大查看)学校名录参见: aspx? ClassID=3060