收藏 分销(赏)

北师大版八年级下册第三章_分式_全套教学案.doc

上传人:xrp****65 文档编号:7693563 上传时间:2025-01-12 格式:DOC 页数:10 大小:527KB
下载 相关 举报
北师大版八年级下册第三章_分式_全套教学案.doc_第1页
第1页 / 共10页
北师大版八年级下册第三章_分式_全套教学案.doc_第2页
第2页 / 共10页
北师大版八年级下册第三章_分式_全套教学案.doc_第3页
第3页 / 共10页
北师大版八年级下册第三章_分式_全套教学案.doc_第4页
第4页 / 共10页
北师大版八年级下册第三章_分式_全套教学案.doc_第5页
第5页 / 共10页
点击查看更多>>
资源描述

1、第三章 分式3.1 分式一、教学目标1.在现实情境中进一步理解用字母表示数的意义,发展符号感.2.了解分式产生的背景和分式的概念,了解分式与整式概念的区别与联系.3.掌握分式有意义的条件,认识事物间的联系与制约关系.二、教学过程.创设问题情境,引入新课面对日益严重的土地沙化问题,某县决定分期分批固沙造林,一期工程计划在一定期限固沙造林2400公顷,实际每月固沙造林的面积比原计划多30公顷,结果提前4个月完成任务.原计划每月固沙造林多少公顷?这一问题中有哪些等量关系?如果原计划每月固沙造林x公顷,那么原计划完成一期工程需要_个月,实际完成一期工程用了_个月.根据题意,可得方程_.根据题意,我认为

2、这个问题的等量关系是:实际固沙造林所用的时间+4=原计划固沙造林所用的时间.(1)这个问题的等量关系也可以是:原计划每月固沙造林的公顷数+30=实际每月固沙造林的公顷数.(2)在这个问题中,涉及到了三个基本量:工作量、工作效率、工作时间.工作量=工作效率工作时间.如果用第(1)个等量关系列方程,应如何设出未知数呢?因为第(1)个等量关系是工作时间的关系,因此需用已知条件和未知数表示出工作时间.题中的工作量是已知的.因此需设出工作效率即原计划每月固沙造林x公顷.原计划完成一期工程需个月,实际完成一期工程需c个月,根据等量关系(1)可列出方程:+4=.用等量关系(2)设未知数,列方程呢?因为等量关

3、系(2)是工作效率之间的关系,根据题意,应设出工作时间.不妨设原计划x个月完成一期工程,实际上完成一期工程用了(x4)个月,那么原计划每月固沙造林的公顷数为公顷,实际每月固沙造林公顷,根据题意可得方程.同学们观察我们列出的两个方程,有什么新的发现?我们设出未知数后,用字母表示数的方法,列出几个代数式,表示出我们需要的基本量.如,,.这些代数式和整式不同.我们虽然列出了方程,但分母中含有字母,要求出它的解,好像很不容易.像这样的代数式同整式有很大的不同,而且它是以分数的形式出现的,它们是不同于整式的一个很大的家族,我们把它们叫做分式.2.例题讲解(1)下列各式中,哪些是整式?哪些是分式?5x7,

4、3x21,5,.(2)当a=1,2时,分别求分式的值.当a为何值时,分式有意义?当a为何值时,分式的值为零?(1)中5x7,3x21, ,5, 是整式;,是分式.(2)解:当a=1时,=1;当a=2时,=.当分母的值等于零时,分式没有意义,除此以外,分式都有意义.由分母2a=0,得a=0.所以,当a取零以外的任何实数时,分式有意义.分式的值为零,包含两层意思:首先分式有意义,其次,它的值为零.因此a的取值有两个要求:所以,当a=1时,分母不为零,分子为零,分式为零.三、随堂练习1.当x取什么值时,下列分式有意义?(1);(2);(3)分析:当分母的值为零时,分式没有意义,除此以外,分式都有意义

5、.解:(1)由分母x1=0,得x=1.所以,当x取除1以外的任何实数时,分式都有意义.(2)由分母x29=0,得x=3.所以,当x取除3和3以外的任何实数时,分式都有意义.(3)由分母x2+1可知,x取任何实数时,x2是一个非负数,所以x2+1不管x取何实数时,x2+1都不会为零.即x取任何实数,都有意义.2.把甲、乙两种饮料按质量比xy混合在一起,可以调制成一种混合饮料,调制1 kg这种混合饮料需多少甲种饮料?解:根据题意,调制1 kg这种混合饮料需 kg甲种饮料.3.2 分式的乘除法一、教学目标1.分式乘除法的运算法则,2.会进行分式的乘除法的运算.二、教学过程探索、交流观察下列算式:=,

6、=,=,=.猜一猜=?=?观察上面运算,可知:两个分数相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母;两个分数相除,把除数的分子和分母颠倒位置后,再与被除数相乘.即=;=.这里字母a,b,c,d都是整数,但a,c,d不为零.1.分式的乘除法法则两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母;两个分式相除,把除式的分子和分母颠倒位置后再与被除式相乘.2.例题讲解例1计算:(1);(2).分析:(1)将算式对照乘除法运算法则,进行运算;(2)强调运算结果如不是最简分式时,一定要进行约分,使运算结果化为最简分式.解:(1)=;(2)=.例2计算:(1)3xy2;(

7、2)分析:(1)将算式对照分式的除法运算法则,进行运算;(2)当分子、分母是多项式时,一般应先分解因式,并在运算过程中约分,可以使运算简化,避免走弯路.解:(1)3xy2=3xy2=x2;(2)=3.做一做通常购买同一品种的西瓜时,西瓜的质量越大,花费的钱越多.因此人们希望西瓜瓤占整个西瓜的比例越大越好.假如我们把西瓜都看成球形,并把西瓜瓤的密度看成是均匀的,西瓜的皮厚都是d,已知球的体积公式为V=R3(其中R为球的半径),那么(1)西瓜瓤与整个西瓜的体积各是多少?(2)西瓜瓤与整个西瓜的体积比是多少?(3)买大西瓜合算还是买小西瓜合算?我们不妨设西瓜的半径为R,根据题意,可得:(1)整个西瓜

8、的体积为V1=R3;西瓜瓤的体积为V2=(Rd)3.(2)西瓜瓤与整个西瓜的体积比为:=()3=(1)3.(3)我认为买大西瓜合算.由=(1)3可知,R越大,即西瓜越大,的值越小,(1)的值越大,(1)3也越大,则的值也越大,即西瓜瓤占整个西瓜的体积比也越大,因此,买大西瓜更合算.三、随堂练习1.计算:(1);(2)(a2a);(3)2.化简:(1);(2)(abb2)解:1.(1)=;(2)(a2a)=(a2a)=(a1)2=a22a+1(3)=(x1)y=xyy.2.(1)=(x2)(x+2)=x24.(2)(abb2)=(abb2)=b.3.3 分式的加减法一、教学目标1.同分母的分式的

9、加减法的运算法则及其应用.2.简单的异分母的分式相加减的运算.二、教学过程问题一:从甲地到乙地有两条路,每条路都是3 km,其中第一条是平路,第二条有1 km的上坡路、2 km的下坡路.小丽在上坡路上的骑车速度为v km/h,在平路上的骑车速度为2 v km/h,在下坡路上的骑车速度为3v km/h,那么(1)当走第二条路时,她从甲地到乙地需多长时间?(2)她走哪条路花费的时间少?少用多长时间?问题二:某人用电脑录入汉字文稿的效率相当于手抄的3倍,设他手抄的速度为a字/时,那么他录入3000字文稿比手抄少用多少时间?答案:问题一,根据题意可得下列线段图:(1)当走第二条路时,她从甲地到乙地需要

10、的时间为(+)h.(2)走第一条路,小丽从甲地到乙地需要的时间为h.但要求出小丽走哪条路花费的时间少.就需要比较(+)与的大小,少用多少时间,就需要用它们中的较大者减去较小者,便可求出.如果要比较(+)与的大小,就比较难了,因为它们的分母中都含有字母.比较两个数的大小,我们可以用作差法.例如有两个数a,b.如果ab0,则ab;如果ab=0,则a=b;如果ab0,则ab.显然(+)和中含有字母,但它们也是用来表示数的,所以我认为可以用实数比较大小的方法来做.如果用作差的方法,例如(+),如何判断它大于零,等于零,小于零呢?做一做(1)+=_.(2)=_.(3)+=_.同分母的分数的加减是分母不变

11、,把分子相加减,例如+=.我认为分母相同的分式相加减与同分母的分数相加减一样,应该是分母不变,把分子相加减.解:(1)+=;解:(2)=;解:(3)+=异分母的分数加减时,可利用分数的基本性质通分,把异分母的分数加减法化成同分母的分数加减法例1计算:(1)+;(2)+例1中的第(1)题,一个分母是a,另一个分母是5a,利用分式的基本性质,只需将第一个分式化成=即可.解:(1)+=+=;(2)+=+=三、计算:(1);(2)+;(3)解:(1)=;(2)+=+=;(3)=.3.4 分式方程一、教学目标1.了解分式方程的一般步骤.2.了解解分式方程验根的必要性.二、教学过程解方程+=2(1)去分母

12、,方程两边同乘以分母的最小公倍数6,得3(3x1)+2(5x+2)=62(4x2).(2)去括号,得9x3+10x+4=124x+2,(3)移项,得9x+10x+4x=12+2+34,(4)合并同类项,得23x=13,(5)使x的系数化为1,两边同除以23,x=.例1 解方程:=4解:方程两边同乘以2x,得600480=8x解这个方程,得x=15检验:将x=15代入原方程,得左边=4,右边=4,左边=右边,所以x=15是原方程的根.例2 .解方程:(1)=;(2)+=2.分析先总结解分式方程的几个步骤,然后解题.解:(1)=去分母,方程两边同乘以x(x1),得3x=4(x1)解这个方程,得x=4检验:把x=4代入x(x1)=43=120,所以原方程的根为x=4.(2)+=2去分母,方程两边同乘以(2x1),得105=2(2x1)解这个方程,得x=检验:把x=代入原方程分母2x1=21=0.所以原方程的根为x=.

展开阅读全文
部分上传会员的收益排行 01、路***(¥15400+),02、曲****(¥15300+),
03、wei****016(¥13200+),04、大***流(¥12600+),
05、Fis****915(¥4200+),06、h****i(¥4100+),
07、Q**(¥3400+),08、自******点(¥2400+),
09、h*****x(¥1400+),10、c****e(¥1100+),
11、be*****ha(¥800+),12、13********8(¥800+)。
相似文档                                   自信AI助手自信AI助手
搜索标签

当前位置:首页 > 教育专区 > 其他

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服