1、电动车充电器电路实例下面介绍的是利用三极管、集成电路为开关器件组成的开关充电电路。(一)恒流部分整个充电通路是:电流从整流校正极出发首先经R3,然后经3DG4、VD、被充电池、R1,最后回到整流桥负极形成回路。由于电流的流通,在电阻R1两端形成压差,三极管3DG2的基极电位高于发射极到一定值时,3DG2导通;若电池初充电时电压较低,充电电流就大,R1两端压差也大,基极电位提高,3DG2进一步导通,拉低了三极管3DG3基极电位,继而又导致了三极管3DG4导通降低,通过3DG4的电流被控而减少,达到恒流的目的。2、保护部分 三极管3DG1原处于截止状态,经充电后电池电压升高,3DG1基极电压跟随升
2、高,直至3DG1导通,造成3DG3基极电压被拉低,相继使3DG4被截止,电路被关断而停止充电。电路停止充电电压值由调节RP2设定。设定时应带负荷(即电池充电状态),当达到该电池充电终止电压时,调节RP2使电路关闭,设定即完成,使关闭电压固定在该品种电池的充电终止电压上,防止过充。电动车电池充电器原理与维修(一)作者:日期:2007-3-7 9:05:36来源: (一)控制器、充电器与车用电池控制器和充电器对车用电池的使用寿命是至关重要的。控制器在从电池取用电能的同时,要防止过放电;充电器在向电池充电的同时要防止过充电。否则,电池极板不是因为过充就是因为过放而受到损坏,电池寿命很快终结。因此,充
3、电器和控制器就像电池的监护人一样,在充电和放电的过程中对它加以保护,过放不行,过充不行。同样,欠充仍然不行。欠充结果是活性物质变得顽固而不再容易产生还原反应,出现钝化现象,这部分极板则只占空间和重量,而不再贮存能量。这部分无效物质越多、电池容量越低。过充、过放、欠放是危害电池寿命的三大因素。(二)脉冲充电脉冲充电是以不连续的、固定电压的方波形向电池充电,充电电流较大。充电初期由于正负极板都处于硫酸铅状态,有较大的接受能力,又由于方波的不连续性,每个波形间又有停止间歇,给极板活性物质以充分的反应、调整、内外物质均衡的机会,所以初期充电较快。随着极板物质不断得到还原,电压不断升高,充电速度不断减慢
4、,活性物质反应速度逐渐降低,极板周围也逐渐积聚大量带电离子,包围住极板,使极板被隔离,阻止后续带电离子到达活性物质。当极板电位达到极限时(接近充电终止电压),电化作用几乎停止进行。到极化点,转而对极板周围的水分进行分解,表现为大量冒泡和水分蒸发,正极表面吸附大量氧气,负极表面吸附大量氢气,这时的电压称为“产气点”。解决和消除这种妨碍充电的极化现象,方法是先短暂地停充,然后用较大的、反方向的、时间极短的电流负脉冲,对正负极板施加反方向电压,清除极板周围聚集的大量正负离子和气体,扫清道路。反脉冲实际就是一种放电措施。将正负极短暂短路的方法也能消除极化,或停顿一段时间极化现象也能自行消除,但负脉冲更
5、有力、更快、更节省时间。(三)开关电路充电器当前的车用充电器和过去传统充电器完全不同,充电器都采用了开关电路,并设置自动调整、控制和保护功能,在充电期间,不需有人看守。开关电路的优点是充电快、质量好、效率高、不损及电池的寿命。开关电路是当前常用的能够稳压稳流、自动调节的装置,并且采用脉冲装置的电路。充电器电路和控制器电路与家用音响、彩电等同属一个类型。只要稍加改造、增加或减少一些元器件,几乎可以代用电动自行车维护要诀使用窍门及防盗秘笈作者:日期:2007-3-7 9:06:02来源: A.维护要诀1、每隔半年时间应对电动自行车进行一次维护,对传动部件润滑防锈,加固各紧固件,调整辐条松紧度。2、
6、电池充电时,先将充电器输出插头插入电池箱,再将充电器的输入插头接入市电插座。充电采用恒流、恒压、浮充三阶段自动转换方式,当电池达到充足程度后自动转入浮充,无须人工控制充电时间。不充电时,不要长时间将充电器空载连接在交流电源上。3、在维修时,凡电机、电池、控制系统、充电器方面的问题须到特约维修中心维修,不要随便拆卸。B.使用窍门善保养:即不要使电动自行车受到意外损害,如不要让积水淹没电机中心、控制器、启动时一定要打开车锁,下车后即关闭电门,平时轮胎充气要足,夏季应避免长时间阳光暴晒,避免在高温度、有腐蚀的环境中存放,刹车要松紧适度。 多助力:理想的使用方法是“人助车动,电助人行,人力电力联动”,
7、省力又省电。因行驶里程数与车载重量、路面状况、启动次数、刹车次数、风向、风速、气温、轮胎气压等有关,所以起步时要先用脚踏骑行,在骑行的过程中扭动调速手把、上桥、上坡、逆风和重载行驶务必用脚踏助力,以避免对电池造成冲击性伤害。影响电池续行里程和使用寿命。 勤充电:使用铅酸电池,要养成当天使用当天充电的习惯,每天骑行电动自行车后不管骑行多远都要充满电,千万不要等电用光了再充电,以免因“深放电”而缩短电池寿命。也不要在电池倒置的情况下充电。 充足电的电池,如果长期放置不用,也要每个月补充电一次。充电要用配套充电器,充电器有保护功能,长时间充电(一般不超过24小时)不会损害电池。充电器要避免高温和潮湿
8、,勿让水进入充电器,以防触电。C.防盗秘笈邻居小沈,工作5年来,连买数辆自行车,不久均不翼而飞,三年前,“移情别恋”,花2000余元购了辆电动车,平安两年多,去年11月底,一不小心遭遇“梁上君子”,小沈懊丧之余连称:“看来电动车也要小心防盗。”这两年,随着市民购买电动车的日益增多,如何采取防盗措施便成了许多顾客购车时的“附带问题”。据介绍:电动车防盗目前已成为许多厂商的研究目标。在厂家开发的防盗报警系统中,有一种设施颇为实用,电动车在未开锁时,凡遇撬动、震动、搬动等情况,车上的警报系统均会发出报警,这种带有报警系统的电动车上市以来。深受消费者青睐。此外,选择附有失窃保险的电动车也是一种预防损失
9、的措施。随着市民防盗意识的增强,目前附有失窃险的电动车销售看好。电动车用电池充电器的原理与维修2008-04-10 06:56 一)稳压 由于市电经常有波动,电压不稳;电路的负载也有变化,造成充电电路电压不稳。这对负载是有害的,尤其是最后阶段超过电池的充终值,电池一定因受损而影响其寿命。在图4-39中,加入一个稳压管,相当于把超过部分“波顶”削掉,电路的电压则保持在设定点上,保护了电池和向负载提供稳定的电源,但这个电压是固定的,不能随情况的变化和需要而调整电压。(二)自动调压电路稳压管虽然可以保持电路电压不超过规定值,但它并不能满足今天的要求。市电由于用电不均衡,电网电压上下波动较大,就暴露了
10、稳压管的不足。当电路电压超过要求时,它能将超过部分削掉,然而电路电压低于要求值时,却不能补足,结果电路工作仍然会出现不正常;另一方面,电路在设计时,一般比要求电压高出30%50%,这样市电电压降低时虽然可以保证,但在市电经常保持在平稳值期间,超出的部分势必经常流过稳压管,稳压管经常有电流通过不仅是不经济的,稳压管本身也不允许。实际上,电路稳压并不使用稳压管,而是采用由分离元器件组成的稳压电路,或选用现成的稳压集成块,随时调整因外界电压不稳造成的电路工作不稳定。不管电压升高还是降低,电路始终工作在理想状态。而稳压管只用在充电电路的某个单元部分内,满足单元稳定工作的需要。集成电路的稳压工作实际是调
11、压,高了可以调低、低了又可以调高,使电压总稳定在设定值范围内。图4-40中采用的是可调式三端稳压集成电路W317(LM317),1脚为输入端Vin、3脚为输出端Vout、2脚为控制端ADJ。稳压电路W317右边有一个并联电路,其中电阻R可以为发光管VD2提供分流电压。图4-40a,电路是固定不可调,当电压达到预定值时,稳压电路停止输出。4-40b是可调典型局部电路,按照这个电路的原理,可以运用到开关电路和充电器等电路中,以达到稳压的目的。图4-40b中,R为取样电阻,1.25V为虚拟电源,实际是W317的基准电压,W317的ADJ和Vout间电压大于或小于此值,内部电路都要做相应的调整,使之稳
12、定在1.25V。这是输出电流Io稳定的关键。输出电流值Io=(1.25-Uab)/R,式中Uab是a、b两点间的压差。调整方法和原理:当RP滑点移向a点时,Uab降低,输出电流Io增大;当向下移动时,Uab增大,相应地Io变小。若因某种原因造成电流不稳,Io增大或减小,则取样电阻R上的电压也随之增大或减小。这时,Vout和ADJ间的变化促使电路内部做相应调整,使输出电流稳定。(三)如何显示充电状态充电电路工作在什么状态,电路是否有电,是否在进行充电,充满了没有,凭眼睛在电路上是看不出来的。为此,只有在电路中设置显示功能,发光管就是最好的元件。在图4-41中最左侧的发光管亮,表示插上电源后市电有
13、通过变压器。但变压器次级有没有电?如果接入电池后,图中最上侧的发光管亮,表示电路有电流通过,充电正在进行。电池充满后,由于电压升高,导致图中最右侧发光管亮,说明充电达到终止点,应当停止充电。(四)自动调整电流的电路1、电路组成及原理 电路由整流、充电通路3CT和C1、R1、BT33A等组成的张弛震荡器、稳压管导通自动关断电路和电池接口等组成(图4-42)。当电池接入电路后,电路才能接通并开始工作,其顺序是:电池电压通过D1、R1到单结晶体管BT33A控制极,单结晶体管导通;电流通过震荡变压器触发可控管3CT,使之导通;电路形成充电通路,对电池充电。2、可调整电流功能 调整图中可变电阻R1,通过
14、改变晶闸管3CT没有导通,电路不能通过电流。3、自动保护 当电阻没有电池接入,即使接通电源,由于可控管3CT没有导通,电路不能通过电流。4、自动断电 当被充电电池已经充满,达到充电终止电压时,电流即通过二极管D1、R1,击穿稳压管2DW,电流被旁路,小环路失电,单结晶体管BT33A因控制极失去电压而停振。通过BT33A控制的晶闸管3CT失去出发电压而电流倒流。四、充电器电路实例下面介绍的是利用三极管、集成电路为开关器件组成的开关充电电路。(一)恒流部分 整个充电通路是:电流从整流校正极出发首先经R3,然后经3DG4、VD、被充电池、R1,最后回到整流桥负极形成回路。由于电流的流通,在电阻R1两
15、端形成压差,三极管3DG2的基极电位高于发射极到一定值时,3DG2导通;若电池初充电时电压较低,充电电流就大,R1两端压差也大,基极电位提高,3DG2进一步导通,拉低了三极管3DG3基极电位,继而又导致了三极管3DG4导通降低,通过3DG4的电流被控而减少,达到恒流的目的。2、保护部分 三极管3DG1原处于截止状态,经充电后电池电压升高,3DG1基极电压跟随升高,直至3DG1导通,造成3DG3基极电压被拉低,相继使3DG4被截止,电路被关断而停止充电。电路停止充电电压值由调节RP2设定。设定时应带负荷(即电池充电状态),当达到该电池充电终止电压时,调节RP2使电路关闭,设定即完成,使关闭电压固
16、定在该品种电池的充电终止电压上,防止过充。(二)可调电流、自动关断、自动保护充电器电路图4-44和图4-42相似,也只有将电池接入电路之后,才能使晶闸管导通进行充电。电池接入后,电流经R2使单结晶体管BT35D的e极得到电压,BT35开始振荡,射极b2电流流入变压器,次极得到耦合电压,触发晶闸管3CT导通,进入充电状态。1、自动停止充电 经过一定时间充电,电池电压逐渐升高。当电压达到充电终止电压值时,稳压管WD被击穿,单结晶体管BT35因e极失压而停振,变压器无震荡信号,次极无输出,晶闸管3CT截止,电路被关闭而停止充电。2、充电电流的调节 图中有两个电位器RP1、RP2。(1)调节RP1可改
17、变3DD基极控制电压,改变三极管的放大倍数,调整充电电压和电流,以适应不同类型电池的要求。由于整个电路及充电电流都通过3DD,它流过的电流较大,开始时可达35A,容易发热,为了防止过热烧毁,应为该管设大面积散热片。(2)调节RP2可改变晶闸管3CT的导通角,控制充电电流的大小。3、自动保护 电源无电时,3DD基极无电压,自动截止或不能导通,即使3CT仍然处于导通状态,电路也是关闭的,电池的电流不能倒流,只能在张弛振荡器范围内小量消耗。4、电路优点 当已经被充满的电池接入电路,电路不会起动也不充电,这是因为稳压管处于击穿状态,单结晶体管不能导通,晶闸管3CT得不到触发电压的缘故。(三)适合于铅酸
18、电池、镍系列电池使用的充电电路根据车用电池电压和电路结构,调整电路元器件型号即可改变成适合的电路。1、电路工作原理 开关稳压电路:整流后的电源,经开关稳压电路稳压在预定点上,也就是电池的充电终止电压。电路由三极管、二极管、电阻、电容和电位器W1组成自激振荡式开关稳压电路,电路工作频率为12kHz,频率大小由1000P电容决定,容量减小,频率就会提高,但以不超过16 kHz为宜,频率高则损耗大。电路也可用稳压管代替,三端式稳压器件效果更好。稳压电路的稳压上限W1调定,调定是在充电电路带负荷状态,50V电压表跨接在电路上。电压检测:电路采用施密特电路检测电压,对电路的要求是:在电池放电终止电压点上
19、,继电器KM闭合接通电源:在电池充电终止电压点之下,继电器KM释放,切断电路。交流电源电路的开关由KM控制。它的调定与上述方法相同,但要调整的是W2。2、电路工作状态(1)充电起始电流较大,达4.6A,对饥饿电池快速充电,短时间内即可充入容量的30%50%。(2)很快即转入3.5A电流,约相当于0.4C速率,并自动维持相当一段时间。(3)随着充电电池电压不断上升,电流强度也不断减低。(4)当电池电压达到充电终止电压前,电流在750mA上逐渐再降低。(5)达到充电终止电压时,继电器KM释放,切断交流电输入电路,停止充电。(四)脉冲反脉冲充电电路用散件组成的电路繁琐复杂,调制费时、漂移较大不稳定,
20、故障率高不易查找。采用集成电路不仅电路简单,周边散件少,调试简单,性能稳定,还具有各种保护功能、自动调节和控制功能。图4-46是用两个时基电路555及周边器件组成的脉冲反脉冲充电电路。电路中的555-1是充电脉冲发生IC、555-2是放电反脉冲发生IC。充电脉冲占空比决定于555-1的2、6脚R2和C3,输出脚为3,输出脉冲通过R5、C7给3DD1基极偏压,当555-1的3脚输出高压电平时,触发3DD1导通,充电电池由全波整流电路出发,经过R7、3DD1给电池充电,电流又经R9返回整流器;输出低电平时,3DD1被截止。555-1的3脚输出信号经C5耦合从555-2的2脚输入,触发555-2的3
21、脚发出短暂的间歇阶段。3DD2基极电位被触发而导通,造成电池通过3DD2D、R8、R9形成的小回路放电。反脉冲占空比由555-2的6脚电容C6、电阻R4决定。反脉冲过后有一个小间隙,之后又开始充电脉冲,如此反复,脉冲反脉冲直至充电结束。时基电路555是充电器经常使用的,另外还有TL494也是常用的集成电路组图电动车充电器原理及维修2008年11月10日 星期一 08:26常用电动车充电器根据电路结构可大致分为两种。第一种是以uc3842驱动场效应管的单管开关电源,配合LM358双运放来实现三阶段充电方式。其电原理图和元件参数见(图表1) 220v交流电经T0双向滤波抑制干扰,D1整流为脉动直流
22、,再经C11滤波形成稳定的300V左右的直流电。U1 为TL3842脉宽调制集成电路。其5脚为电源负极,7脚为电源正极,6脚为脉冲输出直接驱动场效应管Q1(K1358) 3脚为最大电流限制,调整R25(2.5欧姆)的阻值可以调整充电器的最大电流。2脚为电压反馈,可以调节充电器的输出电压。4脚外接振荡电阻R1,和振荡电容C1。T1为高频脉冲变压器,其作用有三个。第一是把高压脉冲将压为低压脉冲。第二是起到隔离高压的作用,以防触电。第三是为uc3842提供工作电源。D4为高频整流管(16A60V)C10为低压滤波电容,D5为12V稳压二极管, U3(TL431)为精密基准电压源,配合U2(光耦合器4
23、N35) 起到自动调节充电器电压的作用。调整w2(微调电阻)可以细调充电器的电压。D10是电源指示灯。D6为充电指示灯。 R27是电流取样电阻(0.1欧姆,5w)改变W1的阻值可以调整充电器转浮充的拐点电流(200300 mA)。 通电开始时,C11上有300v左右电压。此电压一路经T1加载到Q1。第二路经R5,C8,C3, 达到U1的第7脚。强迫U1启动。U1的6脚输出方波脉冲,Q1工作,电流经R25到地。同时T1副线圈产生感应电压,经D3,R12给U1提供可靠电源。T1输出线圈的电压经D4,C10整流滤波得到稳定的电压。此电压一路经D7(D7起到防止电池的电流倒灌给充电器的作用)给电池充电
24、。第二路经R14,D5,C9, 为LM358(双运算放大器,1脚为电源地,8脚为电源正)及其外围电路提供12V工作电源。D9为LM358提供基准电压,经R26,R4分压达到LM358的第二脚和第5脚。正常充电时,R27上端有0.150.18V左右电压,此电压经R17加到LM358第三脚,从1脚送出高电压。此电压一路经R18,强迫Q2导通,D6(红灯)点亮,第二路注入LM358的6脚,7脚输出低电压,迫使Q3关断,D10(绿灯)熄灭,充电器进入恒流充电阶段。当电池电压上升到44.2V左右时,充电器进入恒压充电阶段,输出电压维持在44.2V左右,充电器进入恒压充电阶段,电流逐渐减小。当充电电流减小
25、到200mA300mA时,R27上端的电压下降,LM358的3脚电压低于2脚,1脚输出低电压,Q2关断,D6熄灭。同时7脚输出高电压,此电压一路使Q3导通,D10点亮。另一路经D8,W1到达反馈电路,使电压降低。充电器进入涓流充电阶段。12小时后充电结束。充电器常见的故障有三大类:1:高压故障2:低压故障3:高压,低压均有故障。高压故障的主要现象是指示灯不亮,其特征有保险丝熔断,整流二极管D1击穿,电容C11鼓包或炸裂。Q1击穿,R25开路。U1的7脚对地短路。R5开路,U1无启动电压。更换以上元件即可修复。若U1的7脚有11V以上电压,8脚有5V电压,说明U1基本正常。应重点检测Q1和T1的
26、引脚是否有虚焊。若连续击穿Q1,且Q1不发烫,一般是D2,C4失效,若是Q1击穿且发烫,一般是低压部分有漏电或短路,过大或UC3842的6脚输出脉冲波形不正常,Q1的开关损耗和发热量大增,导致Q1过热烧毁。高压故障的其他现象有指示灯闪烁,输出电压偏低且不稳定,一般是T1的引脚有虚焊,或者D3,R12开路,TL3842及其外围电路无工作电源。另有一种罕见的高压故障是输出电压偏高到120V以上,一般是U2失效,R13开路所致或U3击穿使U1的2脚电压拉低,6脚送出超宽脉冲。此时不能长时间通电,否则将严重烧毁低压电路。 低压故障大部分是充电器与电池正负极接反,导致R27烧断,LM358击穿。其现象是
27、红灯一直亮,绿灯不亮,输出电压低,或者输出电压接近0V,更换以上元件即可修复。另外W2因抖动,输出电压漂移,若输出电压偏高,电池会过充,严重失水,发烫,最终导致热失控,充爆电池。若输出电压偏低,会导致电池欠充。高低压电路均有故障时,通电前应首先全面检测所有的二极管,三极管,光耦合器4N35,场效应管,电解电容,集成电路,R25,R5,R12,R27,尤其是D4(16A60V,快恢复二极管),C10(63V,470UF)。避免盲目通电使故障范围进一步扩大。有一部分充电器输出端具有防反接,防短路等特殊功能。其实就是输出端多加一个继电器,在反接,短路的情况下继电器不工作,充电器无电压输出。 还有一部
28、分充电器也具有防反接,防短路的功能,其原理与前面介绍的不同,其低压电路的启动电压由被充电池提供,且接有一个二极管(防反接)。待电源正常启动后,就由充电器提供低压工作电源。javascript:resizepic(this) border=0这种充电器的控制芯片一般是以TL494为核心,推动2只13007高压三极管。配合LM324(4运算放大器),实现三阶段充电。220V交流电经D1-D4整流,C5滤波得到300V左右直流电。此电压给C4充电,经TF1高压绕组,TF2主绕组,V2等形成启动电流。TF2反馈绕组产生感应电压,使V1,V2轮流导通。因此在TF1低压供电绕组产生电压,经D9,D10整流
29、,C8滤波,给TL494,LM324,V3,V4等供电。此时输出电压较低。TL494启动后其8脚,11脚轮流输出脉冲,推动V3,V4,经TF2反馈绕组激励V1,V2。使V1,V2,由自激状态转入受控状态。TF2输出绕组电压上升,此电压经R29,R26,R27分压后反馈给TL494的1脚(电压反馈)使输出电压稳定在41.2V上。R30是电流取样电阻,充电时R30产生压降。此电压经R11,R12反馈给TL494的15脚(电流反馈)使充电电流恒定在1.8A左右。另外充电电流在D20上产生压降,经R42到达LM324的3脚。使2脚输出高电压点亮充电灯,同时7脚输出低电压,浮充灯熄灭。充电器进入恒流充电
30、阶段。而且7脚低电压拉低D19阳极的电压。使TL494的1脚电压降低,这将导致充电器最高输出电压达到44.8V。当电池电压上升至44.8V时,进入恒压阶段。当充电电流降低到0.3A0.4A时LM324的3脚电压降低,1脚输出低电压,充电灯熄灭。同时7脚输出高电压,浮充灯点亮。而且7脚高电压抬高D19阳极的电压。使TL494的1脚电压上升,这将导致充电器输出电压降低到41.2V上。充电器进入浮充。根据电动自行车铅酸蓄电池的特点,当其为36V/12AH时,采用限压恒流充电方式,初始充电电流最大不宜超过3A。也就是说,充电器输出最大达到43V/3A/129W,已经可满足。在充电过程中,充电电流还将逐
31、渐降低。以目前开关电源技术和开关管生产水平而言,单端开关稳压器输出功率的极限值已提高到180W,甚至更大。输出功率为150W以下的单端它激式开关稳压器,其可靠性已达到极高的程度。MOS FET开关管的应用,成功地解决了开关管二次击穿的难题,使开关电源的可靠性更上一层楼。 目前,应用最广的、也是最早的可直接驱动MOS FET开关管的单端驱动器为UC3842。UC3842在稳定输出电压的同时,还具有负载电流控制功能,因而常称其为电流控制型开关电源驱动器,无疑用于充电器此功能具有独特的优势,只用极少的外围元件即可实现恒压输出,同时还能控制充电电流。尤其是UC3842可直接驱动MOS FET管的特点,
32、可以使充电器的可靠性大幅提高。由于UC3842的应用极广,本文只介绍其特点。 UC3842为双列8脚单端输出的它激式开关电源驱动集成电路,其内部功能包括:基准电压稳压器、误差放大器、脉冲宽度比较器、锁存器、振荡器、脉宽调制器(PWM)、脉冲输出驱动级等等。UC3842的同类产品较多,其中可互换的有 MC3842、IR3842N、SG3842、CM3842(国产)、LM3842等。UC3842内部方框图见图。其特点如下: 单端PWM脉冲输出,输出驱动电流为200mA,峰值电流可达1A。启动电压大于16V,启动电流仅1mA即可进入工作状态。进入工作状态后,工作电压在1034V之间,负载电流为15m
33、A。超过正常工作电压,开关电源进入欠电压或过电压保护状态,此时集成电路无驱动脉冲输出。内设5V/50mA基准电压源,经2:1分压作为取样基准电压。输出的驱动脉冲既可驱动双极型晶体管,也可驱动MOS场效应管。若驱动双极型晶体管,宜在开关管的基极接入RC截止加速电路,同时将振荡器的频率限制在40kHz以下。若驱动MOS场效应管,振荡频率由外接RC电路设定,工作频率最高可达500kHz。内设过流保护输入(第3脚)和误差放大输入(第1脚)两个脉冲调制(PWM)控制端。误差放大器输入端构成主脉宽调制(PWM)控制系统,过流检测输入可对脉冲进行逐个控制,直接控制每个周期的脉宽,使输出电压调整率达到0.01
34、%/V。如果第3脚电压大于1V或第1脚电压小于1V,脉宽调制比较器输出高电平使锁存器复位,直到下一个脉冲到来时才重新置位。如果利用第1、3脚的电平关系,在外电路控制锁存器的开/闭,使锁存器每个周期只输出一次触发脉冲,无疑使电路的抗干扰性增强,开关管不会误触发,可靠性将得以提高。内部振荡器的频率由第4、8脚外接电阻和电容器设定。同时,内部基准电压通过第4脚引入外同步。第4、8脚外接电阻、电容器构成定时电路,电容器的充/放电过程构成一个振荡周期。当电阻的设定值大于5k时,电容器的充电时间远大于放电时间,其振荡频率可根据公式近似得出:f=1/Tc=1/0.55RC=1.8/RC。 由UC3842组成
35、的输出功率可达120W的铅酸蓄电池充电器如图2所示。该充电器中只有开关频率部分为热地,MC3842组成的驱动控制系统和开关电源输出充电部分均为冷地,两种接地电路由输入、输出变压器进行隔离,变压器不仅结构简单,而且很容易实现初次级交流2000V的抗电强度。该充电器输出端电压设定为43V/1.8A,如有需要可将电流调定为3A,用于对容量较大的铅酸蓄电池充电(如用于对容量为30AH的蓄电池充电)。 市电输入经桥式整流后,形成约300V直流电压,因而对此整流滤波电路的要求与通常有所不同。对蓄电池充电器来说,桥式整流的100Hz脉动电流没必要滤除干净,严格说100Hz的脉动电流对蓄电池充电不仅无害,反而
36、有利,在一定程度上可起到脉冲充电的效果,使充电过程中蓄电池的化学反应有缓冲的机会,防止连续大电流充电形成的极板硫化现象。虽然1.8A的初始充电电流大于蓄电池额定容量C的1/10,间歇的大电流也使蓄电池的温升得以缓解。因此,该滤波电路的C905选用47F/400V 的电解电容器,其作用不足以使整流器120W的负载中纹波滤除干净,而只降低整流电源的输出阻抗,以减小开关电路脉冲在供电电路中的损耗。C905的容量减小,使得该整流器在满负载时输出电压降低为280V左右。 U903按MC3842的典型应用电路作为单端输出驱动器,其各引脚作用及外围元件选择原则如下: 第1脚为内部误差放大器输出端。误差电压在
37、IC内部经D1、D2电平移位,R1、R2分压后,送入电流控制比较器的反向输入端,控制PWM锁存器。当1脚为低电平时,锁存器复位,关闭驱动脉冲输出,直到下一个振荡周期开始才重新置位,恢复脉冲输出。外电路接入R913(10k)、C913(0.1F),用以校正放大器频率和相位特性。第2脚内部误差放大器反相输入端。充电器正常充电时,最高输出电压为43V。外电路由R934(16k)、VR902(470)、R904(1k)分压后,得到2.5V的取样电压,与误差放大器同相输入端的2.5V基准电压比较,检出差值,通过输出脉冲占空比的控制使输出电压限定在43V。在调整此电压时,可使充电器空载。调整VR902,可
38、使正负输出端电压为43V。第3脚为充电电流控制端。在第2脚设定的输出电压范围内,通过R902对充电电流进行控制,第3脚的动作阈值为1V,在R902压降1V以内,通过内部比较器控制输出电压变化,实现恒流充电。恒流值为 1.8A,R902选用0.56/3W。在充电电压被限定为43V时,可通过输出电压调整充电电流为恒定的1.75A1.8A。蓄电池充满电,端电压43V,隔离二极管D908 截止,R902中无电流,第3脚电压为0V,恒流控制无效,由第2脚取样电压控制充电电压不超过43V。此时若充满电,在未断电的情况下,将形成43V电压的涓流充电,使蓄电池电压保持在43V。为了防止过充电,36V铅酸蓄电池
39、的此电压上限不宜使电池单元电压超过2.38V。该电路虽为蓄电池取样,实际上也限制了输出电压,如输出电压超过蓄电池电压0.6V,蓄电池电压也随之升高,送入电压取样电路使之降低。第4脚外接振荡器定时元件,CT为2200pF,RT为27k,R911为10。该例中考虑到高频磁芯购买困难,将频率设定为30kHz左右。R911用于外同步,该电路中可不用。第5脚为共地端。第6脚为驱动脉冲输出端。为了实现与市电隔离,由T902驱动开关管。T902可用55mm磁芯,初次级绕组各用0.21mm漆包线绕20匝,绕组间用20.05mm聚脂薄膜绝缘。R909为100,R907为10k。如果Q901内部栅源极无保护二极管
40、,可在外电路并入一只1015V稳压管。第7脚为供电端。为了省去独立供电电路,该电路中由蓄电池端电压降压供电,供电电压为18V。当待充蓄电池接入时,最低电压在32.4V35V之间,接入18V稳压管均可得到18V的稳定电压。滤波电容器C909为100F。第8脚为5V基准电压输出端,同时在IC内部经R3、R4分压为2.5V,作为误差检测基准电压。充电器的脉冲变压器T901可用市售芯柱圆形、直径12mm的磁芯(芯柱对接处已设有1mm的气隙)。初级绕组用0.64mm高强度漆包线绕82匝,次级绕组用0.64mm高强度漆包线双线并绕50匝。初次级之间需垫入3层聚脂薄膜。 该充电器的控制驱动系统和次级充电系统
41、均与市电隔离,且MC3842由待充蓄电池电压供电,无产生超压、过流的可能,而T901次级仅有的几只元器件,只要选择合格,击穿的可能性也几乎为零,因此其可靠性极高。此部分的二极管D911可选择共阴或共阳极,将肖特基二极管并联应用。D908可选用额定电流5A的普通二极管。次级整流电路滤波电容器选用220F已足够,以使初始充电电流较大时具有一定的纹波,而起到脉冲充电的作用。 该充电器电路极为简单,然而可靠性却较高,其原因是:MC3842属逐周控制振荡器,在开关管的每个导通周期进行电压和电流的控制,一旦负载过流,D911漏电击穿;若蓄电池端子短路,第3脚电压必将高于1V,驱动脉冲将立即停止输出;若第2
42、脚取样电压由于输出电压升高超过2.5V,则使第1脚电压低于1V,驱动脉冲也将被关断。多年来,MC3942被广泛用于电脑显示器开关电源驱动器,无论任何情况下(其本身损坏或外围元件故障),都不会引起输出电压升高,只是无输出或输出电压降低,此特点使开关电源的负载电路极其安全。在该充电器中MC3842及其外电路都与市电输入部分无关,加之用蓄电池电压经降压、稳压后对其供电,使其故障率几乎为零。 该充电器中唯一与市电输入有关的电路是T901初级和T902次级之间的开关电路,常见开关管损坏的原因无非两方面:一是采用双极型开关管时,由于温度升高导致热击穿。这点对Q901的负温度系数特性来说是不存在的,场效应管
43、的漏源极导通的电阻特性本身具有平衡其导通电流的能力。此外,由于开关管的反压过高,当开关管截止时,反向脉冲的尖峰极易击穿开关管。为此,该电路中通过减小C905的容量,以在开关管导通的大电流状态下适当降低整流电压。二是采用中心柱为圆型的铁氧体磁芯,其漏感相对小于矩形截面磁芯,而且气隙预留于中心柱,而不在两侧旁柱上,进一步减小了漏感。在此条件下选用VDS较高的开关管是比较安全的。图2中Q901为2SK1539,其VDS为900V,IDS为10A,功率为150W。也可以用规格近似的其它型号MOS FET管代用。如果担心尖峰脉冲击穿开关管,可以在T901的初级接入通常的C、D、R吸收回路。 由于该充电器
44、的初始充电电流、最高充电电压设计均在较低值,且充满电后涓流充电电流极小,基本可以认为是定时充电。如一只12AH的铅酸蓄电池,7小时即可充满电,且充满电后,是否断电对蓄电池、充电器影响均极小。试用中,晚上8点接入电源充电,第二天早7点断电,手摸蓄电池、充电器的外壳温度均未超过室温。么修电动车充电器?手把手教你2008年05月26日 星期一 11:28修一充电器,我们首先用眼睛观察比较明显的损坏,如上图保险丝严重烧毁,电容鼓起。还有最下一图圈红圈处(另一充电器)。然后看北面是否有元件松动脱焊,特别是变压器,滤波电感,大电解电容.本例从保险丝的损坏情况,(从上图)可以判定有以下几种可能:1,桥式整流
45、二极管有部分击穿2,滤波电容失效或击穿短路3,场效应管击穿4,其它原因,如线路被金属物体短路等。所以我们先进行第一步,检查整流二极管,用测量二极管档去测它们的正向压降,如图2,图3所示然后测量场效就管,看其是否击穿,如图4:测电流取样电阻,看是否损坏,如图5:测场效应管驱动电阻是否损坏,如图6:(图示颜色为红红黑金,阻值为22欧5%)测量3842电源与地之间的正向压降由于取样电阻及驱动电阻都未损坏和3842的测量,从这步其本可以判断3842未损坏。如果前两者损坏,3842可以说99.9%损坏。如最后一图的情况。另一损坏充电器总览图相关文章电动车充电器怎么修成志电子制作网手把手来教你图文实例22
46、008/05/07 04:01首页 基础知识电子元器件资料器件应用单元电路资料下载小制作 仪器仪表家用电器灯光控制音响电路报警电路无线收发电路/遥控充电器电路mp3电路其它电路默认分类电源专栏 电动车相关电脑相关开关电源/逆变专题休闲小站生活情感在上一期里,我们是以一个UC3842LM324为核心的单端反激式充电器,这次,我们就以TL494构成的一款充电器的维修。充电器总览图:如图1,图2(背视图)所示。从图1中我们明显的看到保险管严重损坏,因此还是按上一期介绍的从电源输入端入手:首先检查由4只二极管构成的全桥整流电路。如图3所示:图中的测试数值表示二极管已击穿损坏,四个均要测量.接着检查两只
47、大功率三极管.一般使用的是13007,常见的还有C2625,13009等.测量时一般测量它的两个PN结的好坏,基本上就可以测量出它的好坏,图示已击穿,正常数值在0.5-0.8之间.然后测量两只三极管对应的驱动电阻,绝大都数厂家用的是2.2欧1瓦的电阻.图中数值,左图元件完好,右图已击穿损坏,需要更换.检查两只高效率整流二极管是否击穿损坏,图示数值正常,击穿显示为 .0XX测量两只1815三极管的好坏.图示为完好.更换掉损坏的元件,换上新元件,通电测试,充电器正常指示,经测量参数正常,这样这个充电器就修好了.此篇文章更新完毕让我们先看一下充电器的各个部分名称,见下图:让我们再看一下其电路图(与上图的实物不是完全对应电动自行车智能充电器2007/05/09 00:41用的电动自行车智能充电器 是一种高性能、单端输出的电流型控制电路,最大优点是外接元件少,不用独立辅助电源,外电路装配简单,成本低廉。用它作反激式控制的电动自行车智能充电器,在市场上极具竞争力。 全电路原理如图所示,图是的内部框图,各引脚的功能见附表。本电路的新颖之处为打破常规地将内部的误差