收藏 分销(赏)

中公教育深度班学员专项练习之数学运算.doc

上传人:xrp****65 文档编号:7672290 上传时间:2025-01-11 格式:DOC 页数:11 大小:448.50KB
下载 相关 举报
中公教育深度班学员专项练习之数学运算.doc_第1页
第1页 / 共11页
中公教育深度班学员专项练习之数学运算.doc_第2页
第2页 / 共11页
点击查看更多>>
资源描述
中公教育·中公网 版权归中公网所有 中公教育深度班学员专项练习之数学运算 1.13+×0.25+0.625×+×0.125=( ) A.75 B.100 C. D. 2. ×10+×9+…+×2+=( ) A. B. C. D. 3. ×121+444÷+67×21.2=( ) A.5400 B. C.3330 D.7928 4. =( ) A. B. C. D. 5.有一批12米长的钢管,现在要截出5米长的毛坯60根,2米长的毛坯60根,至少要多少根钢管? A.25 B.30 C.35 D.40 6.冷饮店规定一定数量的汽水空瓶可换原装汽水1瓶,旅游团110个旅客集中到冷饮店每人购买了1瓶汽水,他们每喝完一定数量的汽水就用空瓶去换1瓶原装汽水,这样他们一共喝了125瓶汽水,则冷饮店规定几个空瓶换1瓶原装汽水? A.8 B.9 C.10 D.11 7.一条公路旁有A、B、C、D、E5个货站。每两个货站之间的距离相等,现要将这5个货站集中到一个货站,已知A、B、C、D、E的货物分别为70吨、30吨、60吨、50吨、40吨,问应集中到哪一个货站可使运费最省? A.A B.B C.C D.E 8.毛毛骑在牛背上过河,他共有甲、乙、丙、丁4头牛,甲过河要2分钟,乙过河要3分钟,丙过河要4分钟,丁过河要5分钟。毛毛每次只能赶2头牛过河,要把4头牛都赶到对岸去,最少要多少分钟? A.16 B.17 C.18 D.19 9.数学竞赛,共25道题目,评分标准是每做对一题得5分,做错一题倒扣3分,没做为0分,某学生得了94分,则他做错了多少道题? A.2 B.3 C.4 D.5 10.小王的爷爷比奶奶大2岁,爸爸比妈妈大2岁,全家五口人共200岁。已知爷爷年龄是小王的5倍,爸爸年龄在4年前是小王的4倍,则小王的爸爸今年多少岁? A.40 B.36 C.32 D.44 11.(1+++)×(+++)-(1++++)×(++)=( ) A.1 B. C. D. 12.(+++……+)+(+++……+)+(+++……+)+……+(+)+=( ) A.22.5 B.22 C.18.5 D.18 13.(2.25×4.8×7.5×8.1)÷(2.4×2.5×2.7×0.75)=( ) A.48.46 B.50.5 C.54 D.60 14.3.6×31.4+43.9×6.4=( ) A.400 B.394 C.387.6 D.376 15.++++……+=( ) A.1000 B. C.999 D. 16.任写一个六位数,把它的个位数字(不等于0)拿到这个数最左边一位数字的左边得到一个新的六位数,再与原数相加,下面四个数可能正确的是( ) A.172536 B.568741 C.620708 D.845267 17.小陈从家去体育馆参加比赛,先以每分钟50米的速度走了4分钟,发现这样走下,就要迟到6分钟,后来他改变速度,每分钟走65米,结果提前3分钟到达,问小陈家离体育馆多少米? A.2500 B.2350 C.2200 D.2150 18.马立国每天早晨练习长跑都是从足球场跑到湖边,然后再返回来。跑去的时候先是一段上坡路,然后就是下坡路。上坡路马立国每分跑120米,下坡路每分跑150米。去时一共跑了16分钟,返回时跑了15.5分钟。则马立国从足球场向湖边跑的时候,上坡路长多少米? A.2100 B.1800 C.1500 D.1200 19.从1,2,3,……,12中最多能选出几个数,使得在选出的数中,每一个数都不是另一个数的2倍? A.7 B.8 C.9 D.10 20.小赵和小李是两位竞走运动员,小赵从甲地出发,小李同时从乙地出发,相向而行,在两地之间往返练习。第一次相遇地点距甲地1.4千米,第二次相遇地点距乙地0.6千米。当他们两人第四次相遇时,地点距甲地有多远? A2.6千米 B.2.4千米 C.1.8千米 D.1.5千米 21.一只游轮从甲港顺流而下到乙港,马上又逆水返回甲港,共用8小时,顺水每小时比逆水每小时多行12千米,前4小时比后4小时多行30千米。甲、乙两港相距多少千米? A.72 B.60 C.55 D.48 22.小许骑自行车出发24分钟后,小李开车去追,在距出发地8千米追上小许,然后开车返回出发地,返回后又立刻再次去追小许,追上时恰好离出发地16千米。小李开车每小时行多少千米? A.20 B.30 C.40 D.50 23.一辆长12米的汽车以每小时36千米的速度由甲站开往乙站,上午10点整,在距乙站3000米外迎面遇到一个行人,1秒钟后汽车超过这个行人。汽车到达乙站休息10分钟后返回甲站。汽车于何时追上这个行人? A.10点22分30秒 B。10点25分 C.10点30分 D.10点32分30秒 24.甲、乙两个工程队同时抢修一段距离相等的公路,开工12天后,两队完成的工作量正好等于甲队的总工作量。开工20天后,乙完成了任务,甲队还需再修300米才完成任务。两段公路的总长度是多少米? A.2400 B.2000 C.1800 D.1500 25.甲、乙二人从A、B两地同时出发相向而行,甲每分钟行80米,乙每分钟行60米,出发一段时间后,二人在距中点120米处相遇,如果甲出发后在途中某地停留一会儿,二人还将在距中点120米处相遇。问甲在途中停留了多少分钟? A.7 B.8 C.9 D.10 26.小明早上从家步行去学校,走完一半路程时,爸爸发现小明的数学书丢在家里,随即骑车去给小明送书。追上时,小明还有的路程未走完,小明随即上了爸爸的车,由爸爸送往学校。这样,小明比独自步行提早5分钟到校,小明从家到学校全部步行需要多少时间? A.20 B.23 C.25 D.27 27.在一条长12米的电线上,红、蓝甲虫在8:20从左端分别以每分钟13厘米和11厘米的速度向右端爬去,黄甲虫则以每分钟15厘米的速度从右端向左爬去,红甲虫在什么时刻恰好在蓝甲虫和黄甲虫的中间? A.8:55 B.9:00 C.9:05 D.9:10 28.小张,小王,小李同时从湖边同一地点出发,绕湖行走。小张速度是每小时5.4千米,小王速度是每小时4.2千米,他们两人同方向行走,小李与他们反方向行走。半小时后小张与小李相遇,再过5分钟,小李与小王相遇。那么绕湖一周的行程是多少千米? A.5.4 B.4.2 C.3 D.7.2 29.甲、乙两人分别从A,B两地同时出发,相向而行。甲到达B地后立即返回,乙到达A地后也立即返回,已知甲速为乙速的,且甲到达B地后返回时速度提高,乙到达A地后返回时速度提高,且甲、乙两人第一次相遇地点与第二次相遇地点相距35千米。甲、乙两地距离多少千米? A.165 B.175 C.180 D.200 30.在甲、乙、丙三缸酒精溶液中,纯酒精含量分别为48%,6.25%和。已知三缸酒精溶液总量是100千克,其中甲缸酒精溶液的量等于乙、丙两缸酒精溶液的总量。三缸溶液混合后,所含纯酒精的百分数将达56%。那么丙缸中纯酒精的量为( )千克 A.25 B.20 C.18 D.12 31.甲、乙两种含金样品熔成合金,如甲的重量是乙的一半,得到含金68%的合金;如甲的重量是乙的3.5倍,得到含金%的合金。则乙的含金百分数为多少? A.72% B.64% C.60% D.56% 32.甲、乙、丙三队要完成A,B两项工程,B工程工作量比A工程的工作量多,甲、乙、丙三队单独完成A工程所需时间分别是20天、24天、30天。为了同时完成这两项工程,先派甲队做A工程,乙、丙两队共同做B工程,经过几天后,又调丙队与甲队共同完成A工程,那么,丙队甲队合做了多少天? A.18 B.15 C.10 D.3 33..有六只水果箱,每箱里放的是同一种水果,其中只有一箱放的是香蕉,其余都是苹果和梨。已知所放水果的重量分别是1,3,12,21,17,35千克,且苹果总共的重量是梨的5倍,求香蕉有多少千克? A.3 B.21 C.17 D.35 34.已知猫跑5步的路程与狗跑3步的路程相同,猫跑7步的路程与兔跑5步的路程相同。而猫跑3步的时间与狗跑5步的时间相同,猫跑5步的时间与兔跑7步的时间相同。猫、狗、兔沿着周长为300米的圆形跑道,同时同向同地出发,问当它们出发后第一次相遇时狗跑了多少路程? A.8437.5米 B.23437.5米 C.16537.5米 D.25337.5米 35.一次知识竞赛,共3道题,每个题满分6分。给分时只能给出自然数0—6分。如果参加竞赛的人三道题的得分的乘积都是36分,并且任意两人三道题的得分不完全相同,那么最多有多少人参加竞赛? A24 B.20 C.18 D12 36.某小学五年级同学分成69个小组,每组3人,去参加植树劳动。在这些小组中,只有1名男同学的共有15个小组,至少有2名女同学的共有36个小组,有3名男同学的小组与有3名女同学的小组同样多。问这所小学五年级共有男同学多少名? A.102 B.136 C.144 D.158 37.某人上午8点要上班,可是发现家里的闹钟停在了6点10分,他上足发条但忘了对表就急急忙忙的上班去了,到公司一看还提前了10分钟。中午12点下班后,回到家一看,闹钟才11点整,假定此人上班、下班在路上用的时间相同,那么他家的闹钟停了多少分钟? A.100 B.90 C.80 D.70 38.小刚骑自行车从8路汽车起点出发,沿8路车的行驶路线前进。当他骑了1650米时,一辆8路公共汽车从起点站出发,每分钟行驶450米。这辆汽车在行驶过程中每行5分钟停靠一站,停靠时间为1分钟。已知小刚骑车的速度是汽车行驶速度的,这辆汽车出发后多长时间追上小刚? A.15分钟 B.16分钟 C.17分钟 D.18分钟 39.三河村与县城相距18千米。王秘书从三河村委去县城办事。他走1.5千米时,通讯员小张发现王秘书忘了带东西,于是立即追赶。小张追上小王秘书后,马上返回村委,这时王秘书忘了带东西,于是立即追赶。小张追上王秘书后,马上返回村委,这时王秘书也刚到县城。已知小张比王秘书每小时多走1千米,王秘书和小张的速度各是多少? A.4千米/时 B.5千米/时 C.5.5千米/时 D.6千米/时 40.在棱长为12厘米的正方体的面的中心挖洞,并通到对面。洞口是边长为3厘米的正方形。它现在的表面积是多? A.846平方厘米 B.986平方厘米 C.1134平方厘米 D.1324平方厘米 41.一个长10分米、宽8分米、高6分米的长方体表面刷满了绿色,李师傅把它全部分割成棱长为1分米的正方体。然后把没有绿色的部分都要刷上绿色。要刷的面积有多大? A.2880平方分米 B. 2504平方分米 C.2424平方分米 D.376平方分米 42.有一项工程,甲、乙、丙三个工程队每天轮做。原计划按甲、乙、丙次序轮做,恰好用整数天完成;如果按乙、丙、甲 次序轮做,比原计划多用天完成;如果按丙、甲、乙次序轮做,也比原计划多用天完成。已知甲单独做用10天完成,且三个工程队的工作效率各不相同,那么这项工程由甲、乙、丙三队合作要多少天可以完成? A.7 B.6 C.5 D.4 43.2006年某人连续打工24天,共赚得190元(日工资10元,星期六半天工资5元,星期日休息无工资)。已知他打工是从1月下旬的某一天开始的,这个月的1日恰好是星期日,这人打工结束的那一天是2月( )日 A.2月6日 B.2月14日 C.2月18日 D.2月21日 44.5点整开始,当秒针第一次与分针成90度角时,秒针与时针之间的角度是( )度 A.15 B.34 C.58 D.15 45.星期天聪聪和妈妈去书店买书,聪聪用自己存款的一半买了一本数学书,后来妈妈又给他5元,他又用其中比一半多0.4元的钱买了外语书,结果还剩7.2元,那么他未买数学书前共有多少元钱?( ) A.32 B.28.6 C..24.2 D.20.4 46.树林中的三棵树上共落着48只鸟,如果从第一棵树上飞走8只落到第二棵树上,再从第二棵树上飞走6只落到第三棵树上,这时三棵树上鸟的只数相等,原来第二棵树上落了多少只鸟?( ) A.14 B.15 C.16 D.18 47.3月5日学校组织85名学生参加学雷锋活动,一部分同学去敬老院,另一部分同学去孤儿院。出发时临时决定从去敬老院的同学中调21人去孤儿院,结果去孤儿院的同学比去敬老院的多27人,则原来去敬老院的多少人?( ) A.50 B.47 C.35 D.29 48.有红、黄、蓝三种颜色的花,红花和黄花合在一起共60朵,黄花和蓝花合在一起共70朵,红花和蓝花合在一起共80朵。那么黄花有多少朵?( ) A.15 B.25 C.35 D.45 49.某次数学比赛,分两种方法给分:一种是答对一题给5分,不答给2分,答错不给分;另一种是先给40分,答对一题给3分,不答不给分,答错扣1分。某考生两种判分方法均得81分,这次比赛共有多少道题?( ) A.20 B.22 C.25 D.28 50.甲、乙两班学生到离学校24千米的飞机场参观。但只有一辆汽车,一次只能乘坐一个班的学生,为了尽快到达飞机场,两个班商定,由甲班先坐车,乙班先步行,同时出发,甲班学生在途中某次下车后再步行去飞机场,汽车则从某地立即返回接在途中步行的乙班学生,如果两班学生步行的速度相同,汽车速度是他们步行速度的7倍,那么汽车在距飞机场多少千米处返回接乙班学生,才能使两班学生同时到达飞机场?( ) A.1.5 B.2.4 C.3.6 D.4.8 1.【答案】B。解析:原式=×(0.25+0.625+0.125)+13 =13+=100。 2.【答案】C。解析:原式=×(10+9+…+2+1) =×55=。 3.【答案】C。解析:原式=6.7×(121+212)+111×9.9 =333×(6.7+3.3)=3330。 4.【答案】A。解析:原式= =。 5.【答案】C。解析:应尽量选择没有残料的方案。先用30根钢管截出5米长的毛坯60根,2米长的毛坯30根,再用5根钢管截出2米长的毛坯30根,所以至少要35根钢管。 6.【答案】C。解析:110人多喝了125-110=15瓶汽水,则相当于110÷15=7……57个空瓶换一瓶汽水(不含瓶),故冷饮店规定7+1=8个空瓶换1瓶原装汽水。 7.【答案】C。解析:五个货站物资总数的一半为(70+30+60+50+40)÷2=125吨,因为A、E两站都小于125吨,所以都往中间靠一站,此时,B站:30+70=100吨,D站:50+40=90吨,B、D两站仍小于125吨,再往中间靠一站,集中到C站。因此集中到C站可使运费最省。 8.【答案】A。解析:若要时间最短,则一定要让耗时最长的两头牛同时过河。先骑甲、乙过河,骑甲返回,共用5分钟;再骑丙、丁过河,骑乙返回,共用8分钟;最后再骑甲、乙过河,用3分钟,共用时5+8+3=16分钟。 9.【答案】A。解析:如果全做对,应得125分。现在少得了125-94=31分,答错一道减少5+3=8分,不答一道减少5分,8×2+5×3=31分,故他做错了2道题。 10.【答案】B。解析:假设奶奶和爷爷一样大,妈妈和爸爸一样大,全家年龄和是200+4=204岁,这样爷爷、奶奶的年龄和是10个小王的年龄。而爸爸的年龄是4年前小王的4倍多4岁,换句话说,就是比现在小王年龄的4倍少4×4-4=12岁,妈妈也比现在小王的年龄的4倍少12岁,这样现在全家人的年龄和204+12+12=228岁,则小王的年龄为228÷(5×2+4×2+1)=12岁,爸爸的年龄为(12-4)×4+4=36岁。 11.【答案】B。解析:原式=(1+++)×[(++)+]-[(1+++)+]×(++)=×[(1+++)-(++)]= 。 12.【答案】A。解析:原式=+(+)+(++)+……+(+++……+) =+++…… =22.5。 13.【答案】C。解析:原式=(2.25÷2.5)×(4.8÷2.4)×(7.5÷0.75)×(8.1÷2.7) =0.9×2×10×3 =54 14.【答案】B。解析:原式=3.6×31.4+(31.4+12.5)×6.4 =(3.6+6.4)×31.4+12.5×6.4 =394。 15.【答案】C。解析:原式=++……+ =++……+ =1000+(1-+-+-+……+-)÷2 =。 16.【答案】C。解析:新的六位数应可被11整除,故应选择620708。 17.【答案】D。解析:距离为50×[(50×6+65×3)÷(65-50)+4+6]=2150米。 18.【答案】D。解析:假设去时全是上坡,返回全是下坡,往返共用16+15.5=31.5分钟,把下坡时间算1份,上坡时间则是150÷120=1.25份,故下坡时间是31.5(÷1+1.25)=14份,全长14×150=2100米。在假设去时全是下坡路,可得上坡路长(150×16-2100)÷(150-120)×120=1200米。 19.【答案】B。解析:将1—12分成如下6组:1,2,4,8;3,6,12;5,10;7;9;11。易知,每组中相邻的数有2倍关系,不同组中的数不会出现2倍关系,故最多选出2+2+1+1+1+1=8个数。 20.【答案】A。解析:甲、乙两地相距1.4×3-0.6=3.6千米,第四次相遇时,两人共走了7个全程,则小赵共走了1.4×7=9.8千米,9.8÷3.6=2……2.6千米,故地点距甲地2.6千米。 21.【答案】C。解析:前4小时有顺水行驶,也有逆水行驶,后4个小时全为逆水行驶。顺水行驶了30÷12=2.5小时,逆水行驶了8-2.5=5.5小时,则甲、乙两港相距12×2.5÷(5.5-2.5)×5.5=55千米。 22.【答案】C。解析:汽车的速度是汽车速度的(16+8)÷(16-8)=3倍,则小李第一次追上小许用了24÷(3-1)=12分钟,故小李开车的速度为8÷0.2=40千米/时。 23.【答案】B。解析:行人的速度为12÷1-10=2米/秒,汽车遇到行人后用3000÷10=300秒到达乙站,从乙站出发后用[3000+(300+600)×2]÷(10-2)=600秒,(300+600+600)÷60=25分,故汽车于10点25分追上此人。 24.【答案】C。解析:乙队每天修公路的,则开工12天后甲完成了全部工作量的1-×12=,所以甲每天修公路的÷12=,20天后甲还剩下1-×20=,故两段公路的总长度为300÷×2=1800米。 25.【答案】A。解析:两次的相遇点在中点的两侧,所以两次相遇点的距离为240米。第一次相遇甲比乙多走240米,用时240÷80=3分钟,第二次相遇,甲比第一次少走3分钟,但乙要比甲多走240米,用时240÷60=4分钟,说明甲停留了3+4=7分钟。 26.【答案】B。解析:追上小明这段时间里,爸爸与小明所行路程比为(1-):(1--)=7:2,也为速度比。在余下的路程中,因爸爸骑车与小明独自步行所用时间的比为2:7,小明又提前5分钟到校,则若小明步行需要5÷(1-)=7分钟,故小明步行走完全程需要7÷=23分钟。 27.【答案】C。解析:8:30时黄甲虫距左端1200-15×10=1050厘米,设再经过t分钟,红甲虫位与蓝甲虫和黄甲虫之间,此时,红甲虫距蓝甲虫(13-11)t厘米,距黄甲虫[1050-(15+13)t]厘米,可列方程(13-11)t=[1050-(15+13)t],解得t=35分钟,即9:05。 28.【答案】B。解析:小张与小李相遇时,小张比小王多走了(5.4-4.2)×0.5=0.6千米,则小李的速度为0.6÷-4.2=3千米/时,故全程为(3+5.4)×0.5=4.2千米。 29.【答案】A。解析:第一次相遇时,甲、乙两人路程比为5:6,设全程为11份。当乙到达A地时,甲距B地还有6-5×=;当甲到达B地时,乙已经从A地走出了6×(1+)×(÷5)=,则经(11-)÷[6×(1+)+5×(1+)]= 两人第二次相遇,所以第二次相遇点距B地6×=,第一次相遇地点与第二次相遇地点距离为6-=份,故全程为35÷×11=165千米。 30.【答案】D。解析:设丙溶液为x千克,则乙为50-x千克,可列方程50×48%+(50-x)×62.5%+x=100×56%,解得x=18千克,故丙缸中纯酒精为18×=12千克。 31.【答案】A。解析:设甲的含金百分数为x,乙的含金百分数为y,可列方程x+2y=(1+2)×68%,3.5x+y=(1+3.5)×%,解得y=72%。 32.【答案】D。解析:三队完成这项工程一共用了(1+1)÷(++)=18天,乙队一直在做B工程,一共做了18×=,则B工程剩下的1-=为丙做的,故丙队与乙队合做了÷=15天,与甲队合做了18-15=3天。 33.【答案】C。解析:六箱水果的总重量为1+3+12+21+17+35=89,因为苹果是梨的5倍,所以这两种水果的重量应为6的倍数,经验证,只有香蕉为17千克时,苹果和梨的总重量为72千克可以被6整除。 34.【答案】B。解析:猫和狗的速度比为:=9:25;猫和兔的速度比为:=25:49,可得猫、狗和兔的速度比为225:625:441。猫和狗第一次相遇的时间为300÷(625-225)=;猫和兔第一次相遇的时间为300÷(441-225)=,可得猫、狗和兔第一次相遇的时间为和的最小公倍数,故相遇时狗跑了625×=23437.5米。 35.【答案】D。解析:36=1×6×6=2×3×6=3×3×4,三道题得1,6,6分有3种可能,三道题得2,3,6分有6中可能,三道题得3,3,4分有3种可能。故最多有3+6+3=12人。 36.【答案】A。解析:有1名男生2名女生的小组有15个,则有3名女生的小组有36-15=21个,所以有3名男生的小组也有21个,只有1名女生的小组有69-15-21-21=12个,故男生一共有15+12×2+21×3=102名。 37.【答案】C。解析:由题意知:6时10分+闹钟停的时间=7时50分;11时+闹钟停的时间=12时+下班后路上走的时间,所以闹钟停的时间+上班时间=7时50分-6时10分=100分钟,闹钟停的时间上班时间=12时-11时=60分,故闹钟停的时间为(100+60)÷2=80分钟。 38.【答案】C。解析:如果不休息的话汽车要1650÷(450-450×)=11分钟,11÷5=2……1,则汽车在追上小刚前休息了2分钟,而这两分钟内,小刚又走了450××2=600米,汽车又要用600÷(450-450×)=4分钟,故一共用了11+4+2=17分钟。 39.【答案】C。解析:王秘书的速度为(18-1.5)÷(1.5÷1×2)=5.5千米/时。 40.【答案】C。解析:表面积=6×12×12-6×3×3+6×3×4×[(12-3)÷2]=1134平方厘米。 41.【答案】B。解析:原立方体的表面积为10×8×2+10×6×2+8×6×2=376平方分米,分割后所有下立方体的面积为1×1×6×(10×8×6)=2880平方分米,故增加了2880-376=2504平方分米。 42.【答案】D。解析:按甲、乙、丙次序轮做,只有当轮到甲结束时,第二、第三个条件才成立。第一种情况的次序为甲乙丙甲乙丙……甲乙丙甲,第二种情况的次序为乙丙甲乙丙甲……乙、丙甲乙丙,第三种情况的次序为丙甲乙丙甲乙……丙甲乙丙甲。所以甲=丙+甲=乙+丙,解得甲:乙:丙=4:3:2,故甲、乙、丙三人合作的工作效率为÷4×(4+3+2)=,故三队合作要1÷=天可以完成。 43.【答案】D。解析:每7天工资为5×10+5=55元,一共有24÷7=3周……3天,而3周的工资为3×55=165元,所以剩下的3天中赚了190-165=25元,则他应该在周四开始打工。由于他从1月下旬某一天开始的,所以这一天应该为1月26日,故他在2月18日结束。 44.【答案】C。解析:秒针每秒钟走360÷60=6度,分针每秒钟走360÷3600=0.1度,所以从5点整开始再过90÷(6-0.1)=秒,秒针第一次与分针成90度角。此时秒针与时针所成的角度为150-(6-)×=58度。 45.【答案】D。解析:原来有[(7.2+0.4)×2-5]×2=20.4元。 46.【答案】A。解析:现在每棵树上有48÷3=16只鸟,故原来第二棵树上有16-8+6=14只鸟。 47.【答案】A。解析:现在去敬老院的有(85-27)÷2=29人,故原来去敬老院的为29+21=50人。 48.【答案】B。解析:黄花有(60+70-80)÷2=25朵。 49.【答案】B。解析:设答对a题,未答b题,答错c题,可列方程组5a+2b=81①,40+3a-c=81②,由①知,a是奇数,且a≤16,由②知a≥14,所以a=15,由此求得b=3,c=4,故共有15+3+4=22题。 50.【答案】D。解析:设学生步行速度x千米/小时,汽车行驶速度7x千米/小时,所求为y,由汽车所走的时间与学生时间相同,可列方程得=+,解得y=4.8千米。 11 中公教育 010-62698755 82387776
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传
相似文档                                   自信AI助手自信AI助手

当前位置:首页 > 教育专区 > 其他

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服