1、解一元二次方程直接开平方法课 题解一元二次方程直接开平方法课 型教学目标知识技能认识形如x2a(a0)或(ax+b)2c(a0,c0,a,b,c为常数)类型的方程,并会用直接开平方法解过程方法培养学生准确而简洁的计算能力及抽象概括能力情感态度价值观渗透转化思想,掌握一些转化的技能。教学重点掌握直接开平方法解一元二次方程。教学难点灵活运用直接开平方法解一元二次方程。教学内容及教师活动学 生 活 动设 计 意 图一、自主学习 感受新知【问题1】一桶某种油漆可刷的面积为1500dm2,小李用这桶漆恰好刷完10个同样的正方体形状的盒子的全部外表面,你能算出盒子的棱长吗?设正方体的棱长为xdm,则一个正
2、方体的表面积为6x2dm2,根据一桶油漆可刷的面积列出方程: 106x2=1500由此可得:x2=25根据平方根的意义,得x=5即x1=5,x2=-5可以验证5和-5是方程的两根,但棱长不能为负值,所以正方体的棱长为5dm。二、自主交流 探究新知【探究】对照问题1解方程的过程,你认为应该怎样解方程(2x-1)2=5及方程x2+6x+9=4?方程(2x-1)2=5左边是一个整式的平方,右边是一个非负数,根据平方根的意义,可将方程变形为,即将方程变为和学生思考问题,并根据教师引导设未知数,列方程。学生讨论方程的解法学生类比问题1中的方法思考解方程(2x-1)2=5及方程x2+6x+9=4创设问题情
3、境,激发学生兴趣,引出本节内容列出方程后,让学生讨论方程的解法,由于所列出的方程形式比较简单,可以运用平方根的定义(即开平方法)来求出方程的解鼓励学生独立解决问题,在解决问题的过程中体会解简单的一元二次方程的思想“降次”把二次降为一次,进而解一元一次方程即可教 学 过 程 设 计教学内容及教师活动学生活动设 计 意 图两个一元一次方程,从而得到方程(2x-1)2=5的两个解为x1=,x2=。在解上述方程的过程中,实质上是把一个一元二次方程“降次”,转化为两个一元一次方程,这样问题就容易解决了。方程x2+6x+9=4的左边是完全平方式,这个方程可以化成(x+ 3 )2=4,进行降次,得到 x+3
4、=2 ,方程的根为x1= -1,x2= -5。【归纳】在解一元二次方程时通常通过“降次”把它转化为两个一元一次方程即,如果方程能化成或的形式,那么可得或三、自主应用 巩固新知【例1】解下列方程:2y2=8 2(x-8)2=50(2 x-1)2+4=0 4x2-4x+1=0 【分析】引导学生观察以上各个方程能否化成或的形式,若能,则可运用直接开平方法解。解:2y2=8 2(x-8)2=50 y2=4 (x-8)2=25 y=2 x-8=5 y1=2,y2=-2 x-8=5或x-8=-5 x1= 13,x2= -3(2 x-1)2+4=0 4x2-4x+1=0 (2 x-1)2=-40 (2 x-
5、1)2=0原方程无解 2 x-1=0 x1= x2= 【例2】市区内有一块边长为15米的正方形绿地,经城市规划,需扩大绿化面积,预计规划后的正方形绿地面积将达到300平方米,这块绿地的边长增加了多少米?(结果保留一位小数)解:设这块绿地的边长增加了x米。根据题意可列方程:(15+x)2=300 学生试解并板演学生思考讨论帮助学生掌握并巩固一元二次方程的解法,同时通过教师规范的板书引导学生不仅要会解方程还要注意正确的解题格式。 教 学 过 程 设 计教学内容及教师活动学生活动设 计 意 图15+x=10即15+x=10或15+x=-10x1=-15+102.3,x1=-15-10(负根不合题意,
6、舍去) 答:这这块绿地的边长增加了2.3米。【例3】市政府计划2年内将人均住房面积由现在的10m2提高到14.4m2,求每年人均住房面积增长率【分析】设每年人均住房面积增长率为x一年后人均住房面积就应该是10+10x=10(1+x)m2;二年后人均住房面积就应该是10(1+x)+10(1+x)x=10(1+x)2 m2解:设每年人均住房面积增长率为x,依题意可列方程: 10(1+x)2=14.4 (1+x)2=1.44 1+x=1.2 即1+x=1.2或1+x=-1.2x1=0.2=20%,x2= -2.2(负根不合题意,舍去)答:每年人均住房面积增长率应为20%【练习】课后练习四、自主总结 拓展新知1、用直接开平方解一元二次方程。2、理解“降次”思想。3、理解x2=p或(mx+n)2=p(p0)为什么p0?五、作业学生思考讨论学生独立完成练习并相互交流学生总结强调所求未知数的值要使实际问题有意义,让学生能进行根的取舍。教学反思