1、1.1反比例函数(2)教学目标:1.会用待定系数法求反比例函数的解析式.2.通过实例进一步加深对反比例函数的认识,能结合具体情境,体会反比例函数的意义,理解比例系数的具体的意义.3.会通过已知自变量的值求相应的反比例函数的值.运用已知反比例函数的值求相应自变量的值解决一些简单的问题.重点: 用待定系数法求反比例函数的解析式.难点:例3要用科学知识,又要用不等式的知识,学生不易理解.教学过程:一. 复习引入1、反比例函数的定义:判断下列说法是否正确2、思考:如何确定反比例函数的解析式?(1)已知y是x的反比例函数,比例系数是3,则函数解析式是_(2)当m为何值时,函数 是反比例函数,并求出其函数
2、解析式关键是确定比例系数!二.新课1、例2已知y是关于x 的反比例函数,当x=时,y=2,求这个函数的解析式和自变量的取值范围。2、说一说它们的求法:(1)已知变量y与x-5成反比例,且当x=2时 y=9,写出y与x之间的函数解析式.(2)已知变量y-1与x成反比例,且当x=2时 y=9,写出y与x之间的函数解析式.3、例3、设汽车前灯电路上的电压保持不变,选用灯泡的电阻为R(),通过电流的强度为I(A)。(1)已知一个汽车前灯的电阻为30 ,通过的电流为0.40A,求I关于R的函数解析式,并说明比例系数的实际意义。(2)如果接上新灯泡的电阻大于30 ,那么与原来的相比,汽车前灯的亮度将发生什
3、么变化?在例3的教学中可作如下启发:(1)电流、电阻、电压之间有何关系?(2)在电压U保持不变的前提下,电流强度I与电阻R成哪种函数关系?(3)前灯的亮度取决于哪个变量的大小?如何决定? 先让学生尝试练习,后师生一起点评。三.巩固练习:1.当质量一定时,二氧化碳的体积V与密度p成反比例。且V=5m3时,p=198kgm3(1)求p与V的函数关系式,并指出自变量的取值范围。(2)求V=9m3时,二氧化碳的密度。四.拓展:1.已知y与z成正比例,z与x成反比例,当x=-4时,z=3,y=-4.求:(1)Y关于x的函数解析式; (2)当z=-1时,x,y的值.2.五.交流反思 求反比例函数的解析式一般有两种情形:一种是在已知条件中明确告知变量之间成反比例函数关系,如例2;另一种是变量之间的关系由已学的数量关系直接给出,如例3中的由欧姆定律得到。六、布置作业:作业本(2)1.1反比例函数教学反思:本节课学生对用代定系数法及在实际问题中求解析是式都掌握很好,主要问题在于与其他学科的综合运用。