1、22.2二次函数与一元二次方程1总结出二次函数的图象与x轴交点的个数与一元二次方程的根的个数之间的关系,表述何时方程有两个不等的实根,两个相等的实根和没有实根2会利用二次函数的图象求一元二次方程的近似解3会用计算方法估计一元二次方程的根重点方程与函数之间的联系,会利用二次函数的图象求一元二次方程的近似解难点二次函数的图象与x轴交点的个数与一元二次方程的根的个数之间的关系一、复习引入1二次函数:yax2bxc(a0)的图象是一条抛物线,它的开口由什么决定呢?补充:当a的绝对值相等时,其形状完全相同,当a的绝对值越大,则开口越小,反之成立2二次函数yax2bxc(a0)的图象和性质:(1)顶点坐标
2、与对称轴;(2)位置与开口方向;(3)增减性与最值当a0时,在对称轴的左侧,y随着x的增大而减小;在对称轴的右侧,y随着x的增大而增大;当x时,函数y有最小值.当a0时,在对称轴的左侧,y随着x的增大而增大;在对称轴的右侧,y随着x的增大而减小;当x时,函数y有最大值.二、新课教学探索二次函数与一元二次方程:二次函数yx22x,yx22x1,yx22x2的图象如图所示(1)每个图象与x轴有几个交点?(2)一元二次方程x22x0,x22x10有几个根?验证一下一元二次方程x22x20有根吗?(3)二次函数yax2bxc的图象和x轴交点的坐标与一元二次方程ax2bxc0的根有什么关系?归纳:二次函
3、数yax2bxc的图象和x轴交点有三种情况:有两个交点,有一个交点,没有交点当二次函数yax2bxc的图象和x轴有交点时,交点的横坐标就是当y0时自变量x的值,即一元二次方程ax2bxc0的根当b24ac0时,抛物线与x轴有两个交点,交点的横坐标是一元二次方程0ax2bxc的两个根x1与x2;当b24ac0时,抛物线与x轴有且只有一个公共点;当b24ac0时,抛物线与x轴没有交点举例:求二次函数图象yx23x2与x轴的交点A,B的坐标结论:方程x23x20的解就是抛物线yx23x2与x轴的两个交点的横坐标因此,抛物线与一元二次方程是有密切联系的即:若一元二次方程ax2bxc0的两个根是x1,x2,则抛物线yax2bxc与x轴的两个交点坐标分别是A(x1,0),B(x2,0)例1已知函数yx27x,(1)写出函数图象的顶点、图象与坐标轴的交点,以及图象与y轴的交点关于图象对称轴的对称点,然后画出函数图象的草图;(2)自变量x在什么范围内时,y随着x的增大而增大?何时y随着x的增大而减少;并求出函数的最大值或最小值三、巩固练习请完成课本练习:第47页1,2四、课堂小结二次函数与一元二次方程根的情况的关系五、作业布置教材第47页第3,4,5,6题.