1、22.2 平行四边形的判定 教学设计思想:为了加深学生对平行四边形的认识,充分调动学生的学习兴趣,激发学生的探索欲望,本课不仅让学生观察,还动手实际操作,然后老师设置问题,引导学生积极思考,讨论交流,大胆说理,充分发挥学生的主体作用。老师根据学生情况适当点拨,给予指导,辅助学生探究。教学目标:知识与技能:熟记平行四边形的判定条件,并会在解题过程中灵活应用;会根据简单的条件画出平行四边形,并说明画图的依据是什么;能说出平行四边形的性质与判定在应用时前提条件的差别。过程与方法:经历平行四边形判定条件的探究过程,并能灵活运用平行四边形的3个判定条件;学会探究的方法,发展说理的基本技能。情感态度价值观
2、:通过学习,体会几何证明的方法美。教学重难点:重点:探究平行四边形的识别条件,能灵活应用难点:掌握平行四边形的性质和判定的区别及熟练应用教学方法:启发探索、讨论分析法课时安排:1课时教具准备:多媒体或小黑板,常用画图工具学具准备:三角板,四根长度相等的小木棒教学过程一、复习引入上节课我们已经知道了平行四边形的边、角及对角线所具有的性质,请同学们回忆一下都有哪些?学生口答,老师板书.反过来,如果已经给出一个任意的四边形,我们能否利用平行四边形的边、角、对角线的特性来判断它是不是一个平行四边形呢?这节课我们就来一起研究一下(板书课题)二、观察与思考1、利用定义: 两组对边分别平行 平行四边形探究:
3、从平行四边形的性质定理1 可知,平行四边形的对边相等,那么反之是否成立呢?已知,四边形ABCD中,AB=CD,AD=BC.求证:四边形ABCD为平行四边形. 证明: AB/CD, AD/BC 平行四边形判定定理1:如果一个四边形的两组对边分别相等,那么这个四边形是平行四边形简述为:两组对边分别相等的四边形是平行四边形探究:两组对边分别平行,两组对边分别相等都可证明一个四边形是平行四边形,那么一组对边即平行又相等能否得到一个四边形是平行四边形呢?已知,四边形ABCD中,AB/CD,AB=CD.求证:四边形ABCD为平行四边形.平行四边形判定定理2:如果一个四边形的一组对边平行且相等,那么这个四边形是平行四边形.简述为:一组对边平行且相等的四边形是平行四边形.注:平行和相等的是同一组对边三、范例讲解 已知:如图,ABCD 中,E、F分别是 边AB、CD的中点. 求证:四边形EBFD为平行四边形. 四、课堂小结我们一起回忆一下平行四边形的识别办法都有哪些?在今后解决平行四边形问题时要尽可能地运用平行四边形的相应定理,不要总是依赖于全等三角形,否则不利于掌握新的知识五、板书设计平行四边形的识别识别条件1 识别条件2 识别条件2 例题 小结图 图 图