1、二次函数的图像和性质(3)教学目标知识与技能1.会用描点法画二次函数y=ax2+bx+c的图像.2.会用配方法求抛物线y=ax2+bx+c的顶点坐标、开口方向、对称轴、y随x的增减性.3.能通过配方求出二次函数y=ax2+bx+c(a0)的最大或最小值;能利用二次函数的性质求实际问题中的最大值或最小值.过程与方法1.经历探索二次函数y=ax2+bx+c(a0)的图像的作法和性质的过程,体会建立二次函数y=ax2+bx+c(a0)对称轴和顶点坐标公式的必要性.2.在学习y=ax2+bx+c(a0)的性质的过程中,渗透转化(化归)的思想.情感态度进一步体由特殊到一般的化归思想,形成积极参与数学活动
2、的意识.教学重点用配方法求y=ax2+bx+c的顶点坐标;会用描点法画y=ax2+bx+c的图像并能说出图像的性质.教学难点能利用二次函数y=ax2+bx+c(a0)的对称轴和顶点坐标公式,解决一些问题,能通过对称性画出二次函数y=ax2+bx+c(a0)的图像.教学过程一、情境导入,初步认识请同学们完成下列问题.1.把二次函数y=-2x2+6x-1化成y=a(x-h)2+k的形式.2.写出二次函数y=-2x2+6x-1的开口方向,对称轴及顶点坐标.3.画y=-2x2+6x-1的图像.4.抛物线y=-2x2如何平移得到y=-2x2+6x-1的图像.5.二次函数y=-2x2+6x-1的y随x的增
3、减性如何?【教学说明】上述问题教师应放手引导学生逐一完成,从而领会y=ax2+bx+c与y=a(x-h)2+k的转化过程.二、思考探究,获取新知探究1 如何画y=ax2+bx+c图像,你可以归纳为哪几步?学生回答、教师点评:一般分为三步:1.先用配方法求出y=ax2+bx+c的对称轴和顶点坐标.2.列表,描点,连线画出对称轴右边的部分图像.3.利用对称点,画出对称轴左边的部分图像.探究2 二次函数y=ax2+bx+c图像的性质有哪些?你能试着归纳吗?探究3 二次函数y=ax2+bx+c在什么情况下有最大值,什么情况下有最小值,如何确定?学生回答,教师点评:三、典例精析,掌握新知例1 将下列二次
4、函数写成顶点式y=a(x-h)2+k的形式,并写出其开口方向,顶点坐标,对称轴.此抛物线的开口向上,顶点坐标为(6,12),对称轴是x=6.y=-3x2-18x-22=-3(x2+6x)-22=-3(x2+6x+9-9)-22=-3(x+3)2+5.此抛物线的开口向下,顶点坐标为(-3,5),对称轴是x=-3.【教学说明】第小题注意h值的符号,配方法是数学的一个重要方法,需多加练习,熟练掌握;抛物线的顶点坐标也可以根据公式直接求解.例2 用总长为60m的篱笆围成的矩形场地,矩形面积S随矩形一边长l的变化而变化,l是多少时,场地的面积S最大?S与l有何函数关系?举一例说明S随l的变化而变化?怎样
5、求S的最大值呢?解:S=l (30-l)=- l2+30l (0l30)=-( l2-30l)=-( l-15)2+225画出此函数的图像,如图.l=15时,场地的面积S最大(S的最大值为225)【教学说明】二次函数在几何方面的应用特别广泛,要注意自变量的取值范围的确定,同时所画的函数图像只能是抛物线的一部分.四、运用新知,深化理解1.(北京中考)抛物线y=x2-6x+5的顶点坐标为( )A.(3,-4) B.(3,4) C.(-3,-4) D.(-3,4)2.(贵州贵阳中考)已知二次函数y=ax2+bx+c(a0)的图像如图所示,当-5x0时,下列说法正确的是( )A.有最小值5、最大值0B
6、.有最小值-3、最大值6C.有最小值0、最大值6D.有最小值2、最大值63.如图,二次函数y=ax2+bx+c的图像开口向上,图像经过点(-1,2)和(1,0),且与y轴相交于负半轴.(1)给出四个结论:a0;b0;c0;a+b+c=0.其中正确结论的序号是 .(2)给出四个结论:abc0;2a+b0;a+c=1;a1.其中正确结论的序号是 .【教学说明】通过练习,巩固掌握y=ax2+bx+c的图像和性质.【答案】1.A 2.B 3.(1) (2)五、师生互动,课堂小结1.这节课你学到了什么?还有哪些疑惑?2.在学生回答的基础上,教师点评:(1)用配方法求二次y=ax2+bx+c的顶点坐标、对称轴;(2)由y=ax2+bx+c的图像判断与a,b,c有关代数式的值的正负;(3)实际问题中自变量取值范围及函数最值.